Formation of bidomain structure in lithium niobate plates by the stationary external heating method

Formation of bidomain structure in lithium niobate plates by the stationary external heating method The method of development of the bidomain structure in single crystalline lithium niobate plates based on the creation of a given temperature gradient distribution through a sample thickness by stationary heating is considered. Heating the LiNbO3 plate, which is placed between two silicon plates, is implemented by light energy emitted by lamps of the photonic annealing setup, which is absorbed by silicon. The scheme of the technological cell provides the formation and control over heat fluxes penetrating a ferroelectric plate and forming temperature gradients required for the controlled formation of two domains with the opposite polarization vectors (a head-to-head domain structure). The efficiency of light absorption for the formation of heat sources, which can be used for symmetric and asymmetric heating, which determines the position of the conditional surface with a zero temperature gradient and, consequently, a domain boundary position, is confirmed experimentally. In the LiNbO3 plate with a thickness of 1.6 mm and length 60 mm, a symmetric bidomain structure with oppositely directed polarization vectors is formed. The dependence of the bending strain of a console-clipped sample on electric voltage is studied in the temperature range −300 to +300 V; the strain amplitude is more than 35 μm. The high linearity and repeatability of the electric voltage-bending strain characteristic is shown. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Microelectronics Springer Journals

Formation of bidomain structure in lithium niobate plates by the stationary external heating method

Loading next page...
 
/lp/springer_journal/formation-of-bidomain-structure-in-lithium-niobate-plates-by-the-9n3wGrGPVr
Publisher
Springer Journals
Copyright
Copyright © 2014 by Pleiades Publishing, Ltd.
Subject
Engineering; Electrical Engineering
ISSN
1063-7397
eISSN
1608-3415
D.O.I.
10.1134/S1063739714080034
Publisher site
See Article on Publisher Site

Abstract

The method of development of the bidomain structure in single crystalline lithium niobate plates based on the creation of a given temperature gradient distribution through a sample thickness by stationary heating is considered. Heating the LiNbO3 plate, which is placed between two silicon plates, is implemented by light energy emitted by lamps of the photonic annealing setup, which is absorbed by silicon. The scheme of the technological cell provides the formation and control over heat fluxes penetrating a ferroelectric plate and forming temperature gradients required for the controlled formation of two domains with the opposite polarization vectors (a head-to-head domain structure). The efficiency of light absorption for the formation of heat sources, which can be used for symmetric and asymmetric heating, which determines the position of the conditional surface with a zero temperature gradient and, consequently, a domain boundary position, is confirmed experimentally. In the LiNbO3 plate with a thickness of 1.6 mm and length 60 mm, a symmetric bidomain structure with oppositely directed polarization vectors is formed. The dependence of the bending strain of a console-clipped sample on electric voltage is studied in the temperature range −300 to +300 V; the strain amplitude is more than 35 μm. The high linearity and repeatability of the electric voltage-bending strain characteristic is shown.

Journal

Russian MicroelectronicsSpringer Journals

Published: Nov 26, 2014

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off