Formation of a submicron GaAs MESFET gate using a four-layer dielectric dummy gate

Formation of a submicron GaAs MESFET gate using a four-layer dielectric dummy gate In the present study, a technology for the formation of a submicron GaAs MESFET gate of 0.5–0.1 μm in length and above 0.5 μm in height using a four-layer dielectric dummy gate was developed. Techniques of chemical and plasma-chemical deposition from a gaseous phase, differing in etch rates in a buffer solution of hydrofluoric acid, were used to prepare silicon oxide films. Different constructions of a multilayer structure with varying sequences of layers and thicknesses were studied. The conditions of chemical and plasma-chemical etching of dielectrics allowing a dummy double-T-gate to be formed were determined. The employment of a sophisticatedly shaped dummy gate made it possible to obtain a gate electrode of a large cross section with a low length. The possibility in principle to fabricate a MESFET gate with a length of up to Lg = 0.1 μm using lithographic procedures with a minimal resolution of 1.0 μm was demonstrated. Russian Microelectronics Springer Journals

Formation of a submicron GaAs MESFET gate using a four-layer dielectric dummy gate

Loading next page...
SP MAIK Nauka/Interperiodica
Copyright © 2012 by Pleiades Publishing, Ltd.
Engineering; Electrical Engineering
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial