Formation of a bidomain structure in lithium niobate wafers for beta-voltaic alternators

Formation of a bidomain structure in lithium niobate wafers for beta-voltaic alternators The possibility of increasing the efficiency of a beta-voltaic generator due to using a single-crystal bimorph element made of lithium niobate as a piezoelectric converter. The known beta voltaic alternators consist of a piezoelectric cantilever and a source of β-electrons. The cantilever represents a resilient member made, for example, of silicon, on which a piezoelectric element made of PZT piezoceramics is mounted. It is proposed to replace the silicon cantilever structure with a piezoelectric element by a uniform cantilever that represents a thin wafer made of a bidomain single-crystal lithium niobate. Due to this, the efficiency of the mechanical oscillation conversion into electrical power, the system Q-factor, and the stability of the operating parameters simultaneously increase; and the operation temperature range also significantly increases (by several hundred degrees). The solution of the main problem—the formation of a bidomain structure in a thin wafer of lithium niobate—is considered in detail. A method for the high-temperature annealing of samples in a nonuniform electric field is proposed. It is demonstrated that one can predict the domain structure based on the developed model. Samples are obtained having the occurrence depth of the interdomain boundary ranging from 120 to 150 μm. At the same time, it is shown that the sharpness of the boundary depends on the potential difference between the striated electrodes of the technological cell and the external electrode. The method is efficient for manufacturing a bidomain structure in a wafer up to 300 μm thick. Russian Microelectronics Springer Journals

Formation of a bidomain structure in lithium niobate wafers for beta-voltaic alternators

Loading next page...
Pleiades Publishing
Copyright © 2016 by Pleiades Publishing, Ltd.
Engineering; Electrical Engineering
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial