Formation of a 2D vortex pair and its 3D breakup: an experimental study

Formation of a 2D vortex pair and its 3D breakup: an experimental study  Vortex pairs are studied using a dye tracing visualisation technique and a particle tracking velocimetry system. The vortex pairs are produced by gravity induced inlets of water issued through a uniform gap. The inlet Reynolds number is Re=Ud/ν≈875 in all tests (d being the gap width and U the cross sectional mean velocity), i.e. the flow is in the laminar regime. Initially, the dipolar vortex structure is two-dimensional, but after travelling a distance of a few times its own width, the flow structure becomes unstable, breaks up and changes into a three-dimensional flow structure. The breakup appears to be caused by an axial flow in the core centres of each vortex of the dipolar structure. These axial flows are induced by boundary effects related to the von Karman viscous pump. After the breakup, it is believed that a vortex ring is formed through reconnection of rudiments from the dipolar structure mediated by the wall induced vorticity. Experiments in Fluids Springer Journals

Formation of a 2D vortex pair and its 3D breakup: an experimental study

Loading next page...
Copyright © 1997 by Springer-Verlag Berlin Heidelberg
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
Publisher site
See Article on Publisher Site

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial