Forest-type shift and subsequent intensive management affected soil organic carbon and microbial community in southeastern China

Forest-type shift and subsequent intensive management affected soil organic carbon and microbial... In this study, we investigated the effect of forest types changes (from coniferous and broadleaf mixed forest (CBMF) to plantation forests of bamboo (Phyllostachys pubescens forest, MBF) and hickory (Carya cathayensis forest, CHF)) combined with intensive management on soil organic carbon (SOC) and microbial community structure, using the 13C-nuclear magnetic resonance (NMR) and phospholipid fatty acid (PLFA). The results indicated that soil organic carbon significantly decreased by 30.7 and 28.5% in MBF and CHF, respectively. The aromatic C and aromaticity also significantly decreased in MBF and CHF (P < 0.05), while alkyl, O-alkyl and carbonyl C contents increased (P > 0.05). Significant changes of the soil microbial community were found after the forest type changed from CBMF to MBF and CHF. Total soil microbial PLFAs, soil bacteria PLFAs, fungus PLFAs, actinobacteria PLFAs, arbuscular mycorrhizal fungi PLFAs and protozoan PLFAs ranked as follows: CBMF > CHF > MBF (P < 0.05). The ratio of soil fungus to bacteria was in the order of MBF (0.78) > CHF (0.66) > CBMF (0.49) (P < 0.05), while an opposite order was found for ratio of G+/G− values (CBMF > CHF > MBF, P < 0.05). The converting CBMF into MBF and CHF combined with fertilization and tillage significantly changed the SOC and microbial community. Therefore, necessary measures should be taken to improve the SOC and soil fertility in the MBF and CHF. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png European Journal of Forest Research Springer Journals

Forest-type shift and subsequent intensive management affected soil organic carbon and microbial community in southeastern China

Loading next page...
 
/lp/springer_journal/forest-type-shift-and-subsequent-intensive-management-affected-soil-0PSBq7wvz0
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2017 by Springer-Verlag GmbH Germany
Subject
Life Sciences; Forestry; Plant Sciences; Plant Ecology
ISSN
1612-4669
eISSN
1612-4677
D.O.I.
10.1007/s10342-017-1065-0
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial