Forecasting Changes in Copper Futures Volatility with GARCH Models Using an Iterated Algorithm

Forecasting Changes in Copper Futures Volatility with GARCH Models Using an Iterated Algorithm There is a gap in the literature regarding the out-of-sample forecasting ability of GARCH-type models applied to derivatives. A practitioner-oriented method (iterated cumulative sum of squares) is applied to detecting breakpoints in the variance of two copper futures series. Short-, intermediate-, and long-term out-of-sample forecasts of copper future series are compared to forecasts from a benchmark random walk model for each series. Not only do the GARCH-type models dominate the random walk model, but the relative improvement is fairly consistent across series, forecast horizon, and GARCH-type model. The evidence makes clear that, with few exceptions, the forecast improvement of the GARCH-type models over the RW model lies somewhere between 20–30%. It is particularly true that for the long-term close to close forecasts, there is great coherence among the forecasts. These all fall within a fairly narrow range. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Review of Quantitative Finance and Accounting Springer Journals

Forecasting Changes in Copper Futures Volatility with GARCH Models Using an Iterated Algorithm

Loading next page...
 
/lp/springer_journal/forecasting-changes-in-copper-futures-volatility-with-garch-models-jHXTaCbrGI
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 2003 by Kluwer Academic Publishers
Subject
Finance; Corporate Finance; Accounting/Auditing; Econometrics; Operation Research/Decision Theory
ISSN
0924-865X
eISSN
1573-7179
D.O.I.
10.1023/A:1023672428643
Publisher site
See Article on Publisher Site

Abstract

There is a gap in the literature regarding the out-of-sample forecasting ability of GARCH-type models applied to derivatives. A practitioner-oriented method (iterated cumulative sum of squares) is applied to detecting breakpoints in the variance of two copper futures series. Short-, intermediate-, and long-term out-of-sample forecasts of copper future series are compared to forecasts from a benchmark random walk model for each series. Not only do the GARCH-type models dominate the random walk model, but the relative improvement is fairly consistent across series, forecast horizon, and GARCH-type model. The evidence makes clear that, with few exceptions, the forecast improvement of the GARCH-type models over the RW model lies somewhere between 20–30%. It is particularly true that for the long-term close to close forecasts, there is great coherence among the forecasts. These all fall within a fairly narrow range.

Journal

Review of Quantitative Finance and AccountingSpringer Journals

Published: Oct 17, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off