Force modeling of Inconel 718 laser-assisted end milling under recrystallization effects

Force modeling of Inconel 718 laser-assisted end milling under recrystallization effects Recrystallization effects are considered for the proposed force modeling method of Inconel 718 laser-assisted end milling. Oblique cutting forces are transferred to equivalent orthogonal cutting forces through the chip flow model. According to the classic Oxley’s contact mechanics theory, cutting and axial forces are calculated when shear stress is the same as chip flow stress. The Johnson-Cook model predicts the flow stress as a function of strain, strain rate, and temperature. And one parameter in this model has a physical meaning of initial yield stress, which varies with grain size. The Johnson-Mehl-Avrami-Kolmogorov (JMAK) model describes the dynamic recrystallization process of crystalline material and then predicts grain size through the recrystallized volume fraction. Overall, recrystallization effects are considered by applying a grain size-dependent parameter in the Johnson-Cook model. And the dynamic recrystallization process is considered to predict grain size. Five experiments are conducted through a single-beam coaxial laser-assisted milling spindle. And experimental measurements are compared with analytical predictions. Overall, the proposed model provides accurate results in F x and F z prediction. The maximum error is less than 20%. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The International Journal of Advanced Manufacturing Technology Springer Journals

Force modeling of Inconel 718 laser-assisted end milling under recrystallization effects

Loading next page...
 
/lp/springer_journal/force-modeling-of-inconel-718-laser-assisted-end-milling-under-t0MhswXgIa
Publisher
Springer London
Copyright
Copyright © 2017 by Springer-Verlag London
Subject
Engineering; Industrial and Production Engineering; Media Management; Mechanical Engineering; Computer-Aided Engineering (CAD, CAE) and Design
ISSN
0268-3768
eISSN
1433-3015
D.O.I.
10.1007/s00170-017-0379-x
Publisher site
See Article on Publisher Site

Abstract

Recrystallization effects are considered for the proposed force modeling method of Inconel 718 laser-assisted end milling. Oblique cutting forces are transferred to equivalent orthogonal cutting forces through the chip flow model. According to the classic Oxley’s contact mechanics theory, cutting and axial forces are calculated when shear stress is the same as chip flow stress. The Johnson-Cook model predicts the flow stress as a function of strain, strain rate, and temperature. And one parameter in this model has a physical meaning of initial yield stress, which varies with grain size. The Johnson-Mehl-Avrami-Kolmogorov (JMAK) model describes the dynamic recrystallization process of crystalline material and then predicts grain size through the recrystallized volume fraction. Overall, recrystallization effects are considered by applying a grain size-dependent parameter in the Johnson-Cook model. And the dynamic recrystallization process is considered to predict grain size. Five experiments are conducted through a single-beam coaxial laser-assisted milling spindle. And experimental measurements are compared with analytical predictions. Overall, the proposed model provides accurate results in F x and F z prediction. The maximum error is less than 20%.

Journal

The International Journal of Advanced Manufacturing TechnologySpringer Journals

Published: Apr 13, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off