Fock Representations and Deformation Quantization of Kähler Manifolds

Fock Representations and Deformation Quantization of Kähler Manifolds The goal of this paper is to construct the Fock representation of noncommutative Kähler manifolds. Noncommutative Kähler manifolds studied here are constructed by deformation quantization with separation of variables, which was given by Karabegov. The algebra of the noncommutative Kähler manifolds contains the Heisenberg-like algebras. Local complex coordinates and partial derivatives of a Kähler potential satisfy the commutation relations between creation and annihilation operators. A Fock space is constituted by states obtained by applying creation operators on a vacuum which is annihilated by all annihilation operators. The algebras on noncommutative Kähler manifolds are represented as those of linear operators acting on the Fock space. In representations studied here, creation operators and annihilation operators are not Hermitian conjugates of one other, in general. Therefore, the basis vectors of the Fock space are not the Hermitian conjugates of those of the dual vector space. In this sense, we call the representation the twisted Fock representation. In this presentation, we construct the twisted Fock representations for arbitrary noncommutative Kähler manifolds given by deformation quantization with separation of variables, and give a dictionary to translate between the twisted Fock representations and functions on noncommutative Kähler manifolds concretely. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Advances in Applied Clifford Algebras Springer Journals

Fock Representations and Deformation Quantization of Kähler Manifolds

Loading next page...
 
/lp/springer_journal/fock-representations-and-deformation-quantization-of-k-hler-manifolds-UpA7towOfe
Publisher
Springer International Publishing
Copyright
Copyright © 2017 by Springer International Publishing
Subject
Physics; Mathematical Methods in Physics; Theoretical, Mathematical and Computational Physics; Applications of Mathematics; Physics, general
ISSN
0188-7009
eISSN
1661-4909
D.O.I.
10.1007/s00006-016-0753-z
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial