Foaming of blood in endovenous laser treatment

Foaming of blood in endovenous laser treatment This work is dedicated to a challenging issue of modern phlebology—establishment of a physical mechanism of the endovenous laser treatment (EVLT) against great saphenous vein incompetence (protuberant varicosities). Using optical and acoustical methods, we have studied the laser-induced formation of microbubbles in an aqueous solution of surface-active substances, serum, and blood directly in patients while conducting EVLT of the great saphenous vein in a clinical setting. We have used lasers with wavelengths 0.97 and 1.47 μm. Their radiation was transmitted through a quartz-quartz polymer fiber 600 μm in diameter. It has been found that in all cases, the laser beam with moderate power (1–10 W) supplied through an optical fiber leads to the formation of micro-bubbled foam. It has been shown that laser exposure during EVLT induces blood boiling, which results in heating of the venous walls (thermal destruction of the intima) and provides effective foam occlusion of the blood vessels (hemostasis). Necessary and sufficient conditions for a successful EVLT are associated with the thermal destruction of intima and laser-induced foam hemostasis. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Lasers in Medical Science Springer Journals

Foaming of blood in endovenous laser treatment

Loading next page...
 
/lp/springer_journal/foaming-of-blood-in-endovenous-laser-treatment-xw5HiUZo08
Publisher
Springer Journals
Copyright
Copyright © 2018 by Springer-Verlag London Ltd., part of Springer Nature
Subject
Medicine & Public Health; Medicine/Public Health, general; Dentistry; Optics, Lasers, Photonics, Optical Devices; Quantum Optics
ISSN
0268-8921
eISSN
1435-604X
D.O.I.
10.1007/s10103-018-2552-3
Publisher site
See Article on Publisher Site

Abstract

This work is dedicated to a challenging issue of modern phlebology—establishment of a physical mechanism of the endovenous laser treatment (EVLT) against great saphenous vein incompetence (protuberant varicosities). Using optical and acoustical methods, we have studied the laser-induced formation of microbubbles in an aqueous solution of surface-active substances, serum, and blood directly in patients while conducting EVLT of the great saphenous vein in a clinical setting. We have used lasers with wavelengths 0.97 and 1.47 μm. Their radiation was transmitted through a quartz-quartz polymer fiber 600 μm in diameter. It has been found that in all cases, the laser beam with moderate power (1–10 W) supplied through an optical fiber leads to the formation of micro-bubbled foam. It has been shown that laser exposure during EVLT induces blood boiling, which results in heating of the venous walls (thermal destruction of the intima) and provides effective foam occlusion of the blood vessels (hemostasis). Necessary and sufficient conditions for a successful EVLT are associated with the thermal destruction of intima and laser-induced foam hemostasis.

Journal

Lasers in Medical ScienceSpringer Journals

Published: May 28, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off