Fluorescence transients in chloroplasts of Chara corallina cells during transmission of photoinduced signal with the streaming cytoplasm

Fluorescence transients in chloroplasts of Chara corallina cells during transmission of... Intracellular transport assisted by rotatory cytoplasmic movement in characean green algae exerts regulatory influence on plasmalemmal ion channels and photosynthetic activity of chloroplasts. In internodal cells of Chara corallina Klein ex Willd., the photoinduced signal transmitted with the flow of streaming cytoplasm for a distance of 1–3 mm from the site of its emergence was found to release or enhance non-photochemical quenching of chlorophyll fluorescence, depending on the intensity of background illumination in the analyzed area. Under dim background irradiance (10–30 μmol quanta/(m2s)), the distant signal transferred from brightly illuminated 0.4-mm-wide area elicited a transient increase in maximal (F′m) and actual (F) fluorescence. However, at higher background irradiances, the arrival of the same signal resulted in strong quenching of F′m and in transitory changes of F. The transformation of “low light response” to F′m changes of opposite polarity occurred at some threshold irradiance. Hence, even slight variations in irradiance at the chloroplast layer, attributed to structural features of characean internodes, might promote formation of uneven photosynthetic profile under the influence of signals transmitted along the cell with the cytoplasmic flow. Analysis of chloroplast fluorescence in situ as a function of pH in experiments with intracellular perfusion indicated that the initial response to a distant light stimulus is caused by the transient increase in cytoplasmic pH in the area of fluorescence measurements. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

Fluorescence transients in chloroplasts of Chara corallina cells during transmission of photoinduced signal with the streaming cytoplasm

Loading next page...
 
/lp/springer_journal/fluorescence-transients-in-chloroplasts-of-chara-corallina-cells-20G7W1y7eZ
Publisher
SP MAIK Nauka/Interperiodica
Copyright
Copyright © 2013 by Pleiades Publishing, Ltd.
Subject
Life Sciences; Plant Physiology; Plant Sciences
ISSN
1021-4437
eISSN
1608-3407
D.O.I.
10.1134/S1021443712060039
Publisher site
See Article on Publisher Site

Abstract

Intracellular transport assisted by rotatory cytoplasmic movement in characean green algae exerts regulatory influence on plasmalemmal ion channels and photosynthetic activity of chloroplasts. In internodal cells of Chara corallina Klein ex Willd., the photoinduced signal transmitted with the flow of streaming cytoplasm for a distance of 1–3 mm from the site of its emergence was found to release or enhance non-photochemical quenching of chlorophyll fluorescence, depending on the intensity of background illumination in the analyzed area. Under dim background irradiance (10–30 μmol quanta/(m2s)), the distant signal transferred from brightly illuminated 0.4-mm-wide area elicited a transient increase in maximal (F′m) and actual (F) fluorescence. However, at higher background irradiances, the arrival of the same signal resulted in strong quenching of F′m and in transitory changes of F. The transformation of “low light response” to F′m changes of opposite polarity occurred at some threshold irradiance. Hence, even slight variations in irradiance at the chloroplast layer, attributed to structural features of characean internodes, might promote formation of uneven photosynthetic profile under the influence of signals transmitted along the cell with the cytoplasmic flow. Analysis of chloroplast fluorescence in situ as a function of pH in experiments with intracellular perfusion indicated that the initial response to a distant light stimulus is caused by the transient increase in cytoplasmic pH in the area of fluorescence measurements.

Journal

Russian Journal of Plant PhysiologySpringer Journals

Published: Dec 28, 2012

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off