Access the full text.
Sign up today, get DeepDyve free for 14 days.
Fluorescence correlation spectroscopy (FCS) is a powerful tool to quantitatively study the diffusion of fluorescently labeled molecules. It allows in principle important questions of macromolecular transport and supramolecular aggregation in living cells to be addressed. However, the crowded environment inside the cells slows diffusion and limits the reservoir of labeled molecules, causing artifacts that arise especially from photobleaching and limit the utility of FCS in these applications. We present a method to compute the time correlation function from weighted photon arrival times, which compensates computationally during the data analysis for the effect of photobleaching. We demonstrate the performance of this method using numerical simulations and experimental data from model solutions. Using this technique, we obtain correlation functions in which the effect of photobleaching has been removed and in turn recover quantitatively accurate mean-square displacements of the fluorophores, especially when deviations from an ideal Gaussian excitation volume are accounted for by using a reference calibration correlation function. This allows quantitative FCS studies of transport processes in challenging environments with substantial photobleaching like in living cells in the future.
Journal of Fluorescence – Springer Journals
Published: Jan 24, 2018
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.