Fluorescence and Photosynthetic Activity of Chloroplasts in Acid and Alkaline Zones of Chara corallina

Fluorescence and Photosynthetic Activity of Chloroplasts in Acid and Alkaline Zones of Chara... Continuous profiles of local pH near the cell surface of Chara corallinawere recorded during uniform longitudinal movement of an internodal cell relative to a stationary pH microelectrode. Under illumination, the pH profile consisted of alternating acid and alkaline bands with a pH difference of up to 3 pH units. After darkening, the bands disappeared and pH became uniformly distributed along the cell length. Chlorophyll fluorescence of chloroplasts was measured by microfluorometry at different locations within one cell, and significant differences were observed in close relation to light-dependent pH banding. The chlorophyll fluorescence yield was lower in zones of low external pH than in alkaline zones both under actinic and saturating light. The fluorescence parameters Fand F" m and the quantum yield of photosystem II (PSII) displayed variations along the cell length in accordance with pH changes in unstirred layers of the medium. The results show that PSII photochemical efficiency and the rate of noncyclic electron transport are higher in the chloroplasts of acid zones (zones of H+extrusion from the cell) than in alkaline zones. The dependence of photosynthetic electron transport on local pH near the cell surface may result from different contents of CO2in acid and alkaline regions. The acid zones are enriched with CO2that readily permeates through the membrane providing the substrate for the Calvin cycle. Conversely, a poorly permeating form, HCO– 3is predominant in alkaline zones, which may restrict the dark reactions and photosynthetic electron flow. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

Fluorescence and Photosynthetic Activity of Chloroplasts in Acid and Alkaline Zones of Chara corallina

Loading next page...
 
/lp/springer_journal/fluorescence-and-photosynthetic-activity-of-chloroplasts-in-acid-and-lTj0JJ4xWX
Publisher
Springer Journals
Copyright
Copyright © 2001 by MAIK “Nauka/Interperiodica”
Subject
Life Sciences; Plant Sciences
ISSN
1021-4437
eISSN
1608-3407
D.O.I.
10.1023/A:1016610315798
Publisher site
See Article on Publisher Site

Abstract

Continuous profiles of local pH near the cell surface of Chara corallinawere recorded during uniform longitudinal movement of an internodal cell relative to a stationary pH microelectrode. Under illumination, the pH profile consisted of alternating acid and alkaline bands with a pH difference of up to 3 pH units. After darkening, the bands disappeared and pH became uniformly distributed along the cell length. Chlorophyll fluorescence of chloroplasts was measured by microfluorometry at different locations within one cell, and significant differences were observed in close relation to light-dependent pH banding. The chlorophyll fluorescence yield was lower in zones of low external pH than in alkaline zones both under actinic and saturating light. The fluorescence parameters Fand F" m and the quantum yield of photosystem II (PSII) displayed variations along the cell length in accordance with pH changes in unstirred layers of the medium. The results show that PSII photochemical efficiency and the rate of noncyclic electron transport are higher in the chloroplasts of acid zones (zones of H+extrusion from the cell) than in alkaline zones. The dependence of photosynthetic electron transport on local pH near the cell surface may result from different contents of CO2in acid and alkaline regions. The acid zones are enriched with CO2that readily permeates through the membrane providing the substrate for the Calvin cycle. Conversely, a poorly permeating form, HCO– 3is predominant in alkaline zones, which may restrict the dark reactions and photosynthetic electron flow.

Journal

Russian Journal of Plant PhysiologySpringer Journals

Published: Oct 10, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off