Fluid–structure interaction of a splitter plate in a convergent channel

Fluid–structure interaction of a splitter plate in a convergent channel The fluid–structure interaction (FSI) of a splitter plate in a convergent channel flow is studied by measuring both the flow field and the plate vibration. Particle Image Velocimetry (PIV) measurements show that the wake generated by the plate is characterized by cellular vortex shedding. Mean and RMS velocities presented in the plane normal to the main flow direction visualize clearly the cellular structure and related secondary flows. To evaluate the energy and spatial organization of the vortex shedding, spectral and correlation estimation methods are adapted to the PIV data. By presenting the spanwise variation of the streamwise spectra along the trailing edge, the nature of the cellular vortex shedding becomes evident. 2D space-correlation function reveals that the shedding in two neighboring cells occurs in a 180-degree phase shift. The vibration of the plate is studied with Digital Imaging (DI) and Laser Vibrometer (LV). The DI is based on images measured by the PIV system. An image-processing algorithm is used to detect the plate tip location and velocity simultaneously with the estimation of the fluid velocity field. The LV is used for the time-resolved measurement of the plate vibration. The results show that the plate vibrates in a very distinct mode characterized by a spanwise standing wave along the plate-trailing edge. This mode, in turn, causes the cellular vortex shedding. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Fluid–structure interaction of a splitter plate in a convergent channel

Loading next page...
 
/lp/springer_journal/fluid-structure-interaction-of-a-splitter-plate-in-a-convergent-t092bQfTS9
Publisher
Springer-Verlag
Copyright
Copyright © 2005 by Springer-Verlag
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-005-0019-3
Publisher site
See Article on Publisher Site

Abstract

The fluid–structure interaction (FSI) of a splitter plate in a convergent channel flow is studied by measuring both the flow field and the plate vibration. Particle Image Velocimetry (PIV) measurements show that the wake generated by the plate is characterized by cellular vortex shedding. Mean and RMS velocities presented in the plane normal to the main flow direction visualize clearly the cellular structure and related secondary flows. To evaluate the energy and spatial organization of the vortex shedding, spectral and correlation estimation methods are adapted to the PIV data. By presenting the spanwise variation of the streamwise spectra along the trailing edge, the nature of the cellular vortex shedding becomes evident. 2D space-correlation function reveals that the shedding in two neighboring cells occurs in a 180-degree phase shift. The vibration of the plate is studied with Digital Imaging (DI) and Laser Vibrometer (LV). The DI is based on images measured by the PIV system. An image-processing algorithm is used to detect the plate tip location and velocity simultaneously with the estimation of the fluid velocity field. The LV is used for the time-resolved measurement of the plate vibration. The results show that the plate vibrates in a very distinct mode characterized by a spanwise standing wave along the plate-trailing edge. This mode, in turn, causes the cellular vortex shedding.

Journal

Experiments in FluidsSpringer Journals

Published: Sep 6, 2005

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off