Flowering in space

Flowering in space The reproductive success of plants is often dependent on their flowering time being adapted to the terrestrial environment, in which gravity remain constant. Whether plants can follow the same rule to determine their flowering time under microgravity in space is unknown. Although numerous attempts have been made to grow a plant through a complete life cycle in space, apparently no published information exists concerning the flowering control of plants under microgravity in space. Here, we focused on two aspects. Firstly the environmental and intrinsic factors under microgravity related to flowering control. Secondly, the plant-derived regulators are involved in flowering control under microgravity condition. The potential environmental and intrinsic factors affect plant flowering under microgravity may include light, biological circadian clock as well as long-distance signaling, while the plant-derived flowering regulators in response to microgravity could include gibberellic acid, ethylene, microRNA and sugar. The results we have obtained from the space experiments on board the Chinese recoverable satellites (the SJ-8 and the SJ-10) and the experiment on the Chinese space lab TG-2 are also introduced. We conclude by suggesting that long-term space experiments from successive generations and a systematic analysis of regulatory networks at the molecular level is needed to http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Microgravity - Science and Technology Springer Journals

Flowering in space

Loading next page...
 
/lp/springer_journal/flowering-in-space-faU0RkyFYm
Publisher
Springer Netherlands
Copyright
Copyright © 2018 by Springer Science+Business Media B.V., part of Springer Nature
Subject
Engineering; Aerospace Technology and Astronautics; Space Sciences (including Extraterrestrial Physics, Space Exploration and Astronautics) ; Classical and Continuum Physics
ISSN
0938-0108
eISSN
1875-0494
D.O.I.
10.1007/s12217-018-9626-5
Publisher site
See Article on Publisher Site

Abstract

The reproductive success of plants is often dependent on their flowering time being adapted to the terrestrial environment, in which gravity remain constant. Whether plants can follow the same rule to determine their flowering time under microgravity in space is unknown. Although numerous attempts have been made to grow a plant through a complete life cycle in space, apparently no published information exists concerning the flowering control of plants under microgravity in space. Here, we focused on two aspects. Firstly the environmental and intrinsic factors under microgravity related to flowering control. Secondly, the plant-derived regulators are involved in flowering control under microgravity condition. The potential environmental and intrinsic factors affect plant flowering under microgravity may include light, biological circadian clock as well as long-distance signaling, while the plant-derived flowering regulators in response to microgravity could include gibberellic acid, ethylene, microRNA and sugar. The results we have obtained from the space experiments on board the Chinese recoverable satellites (the SJ-8 and the SJ-10) and the experiment on the Chinese space lab TG-2 are also introduced. We conclude by suggesting that long-term space experiments from successive generations and a systematic analysis of regulatory networks at the molecular level is needed to

Journal

Microgravity - Science and TechnologySpringer Journals

Published: May 31, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off