Flowering estimation in apple orchards by image analysis

Flowering estimation in apple orchards by image analysis Tree-specific management practice related to individual tree physiological condition is necessary for higher quality and quantity in apple fruit production. Detection of apple flowering abundance based on analysis of HSL (hue, saturation, luminance) images was used to estimate the number of flower clusters (FC) of individual trees in a high density apple orchard. The image acquisition was performed with a still camera and an industrial color camera during the day and night. The FC estimation algorithm included HSL thresholding with parameter optimization. Three hypothetical, tree-specific management practices (sprayings) were assumed, using >25, >50 and >100 FC thresholds to carry out the practice. When an industrial camera was used for image acquisition during the daytime and hypothetical spraying was done by on/off criterion >100 FC per tree, 10 % incorrect executions were identified. Comparable FC counting performance was achieved by using a still camera or an industrial camera. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Precision Agriculture Springer Journals

Flowering estimation in apple orchards by image analysis

Loading next page...
 
/lp/springer_journal/flowering-estimation-in-apple-orchards-by-image-analysis-RsQxwu9czm
Publisher
Springer US
Copyright
Copyright © 2013 by Springer Science+Business Media New York
Subject
Life Sciences; Agriculture; Soil Science & Conservation; Remote Sensing/Photogrammetry; Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences; Atmospheric Sciences
ISSN
1385-2256
eISSN
1573-1618
D.O.I.
10.1007/s11119-013-9341-6
Publisher site
See Article on Publisher Site

Abstract

Tree-specific management practice related to individual tree physiological condition is necessary for higher quality and quantity in apple fruit production. Detection of apple flowering abundance based on analysis of HSL (hue, saturation, luminance) images was used to estimate the number of flower clusters (FC) of individual trees in a high density apple orchard. The image acquisition was performed with a still camera and an industrial color camera during the day and night. The FC estimation algorithm included HSL thresholding with parameter optimization. Three hypothetical, tree-specific management practices (sprayings) were assumed, using >25, >50 and >100 FC thresholds to carry out the practice. When an industrial camera was used for image acquisition during the daytime and hypothetical spraying was done by on/off criterion >100 FC per tree, 10 % incorrect executions were identified. Comparable FC counting performance was achieved by using a still camera or an industrial camera.

Journal

Precision AgricultureSpringer Journals

Published: Dec 20, 2013

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off