Flower-predominant expression of a gene encoding a novel class I chitinase in rice (Oryza sativa L.)

Flower-predominant expression of a gene encoding a novel class I chitinase in rice (Oryza sativa L.) A flower-predominant cDNA for a gene, termed OsChia1;175, was isolated from a cDNA library of rice pistils. Northern blot and RT-PCR analyses revealed that the OsChia1;175 gene is highly expressed in floral organs (pistils, stamens and lodicules at the heading stage) but not or at an extremely low level in vegetative organs. OsChia1;175 encodes a protein that consists of 340 amino acid residues, and the putative mature protein shows 52% to 63% amino acid identity to class I chitinases of rice or other plants. The phylogenetic tree shows that the OsChia1;175 protein is a new type of plant class I chitinase in rice. The expression of OsChia1;175 in vegetative organs is not induced by several chemicals, UV, and wounding. The soluble putative mature OsChia1;175 protein expressed in Escherichia coli exhibited chitinase activity in the assay with colloidal chitin as a substrate. Genomic Southern analysis revealed that the OsChia1;175 gene was organized as a low-copy gene family. The rice genomic library was screened and a genome clone corresponding to OsChia1;175 was isolated. The transcription start sites of the OsChia1;175 gene were mapped by primer extension analysis. The 1.2 kb putative promoter region of the OsChia1;175 gene was fused to the GUS (β-glucuronidase) gene, and this chimeric gene was introduced to rice by Agrobacterium-mediated transformation. The flower-predominant gene expression was identified also in the transgenic rice plants. The high promoter activity was detected in the stigmas, styles, stamens and lodicules in transgenic plants. The possible functions of OsChia1;175 are discussed. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Flower-predominant expression of a gene encoding a novel class I chitinase in rice (Oryza sativa L.)

Loading next page...
 
/lp/springer_journal/flower-predominant-expression-of-a-gene-encoding-a-novel-class-i-Tpu07QYxKV
Publisher
Springer Journals
Copyright
Copyright © 2000 by Kluwer Academic Publishers
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1023/A:1006401816145
Publisher site
See Article on Publisher Site

Abstract

A flower-predominant cDNA for a gene, termed OsChia1;175, was isolated from a cDNA library of rice pistils. Northern blot and RT-PCR analyses revealed that the OsChia1;175 gene is highly expressed in floral organs (pistils, stamens and lodicules at the heading stage) but not or at an extremely low level in vegetative organs. OsChia1;175 encodes a protein that consists of 340 amino acid residues, and the putative mature protein shows 52% to 63% amino acid identity to class I chitinases of rice or other plants. The phylogenetic tree shows that the OsChia1;175 protein is a new type of plant class I chitinase in rice. The expression of OsChia1;175 in vegetative organs is not induced by several chemicals, UV, and wounding. The soluble putative mature OsChia1;175 protein expressed in Escherichia coli exhibited chitinase activity in the assay with colloidal chitin as a substrate. Genomic Southern analysis revealed that the OsChia1;175 gene was organized as a low-copy gene family. The rice genomic library was screened and a genome clone corresponding to OsChia1;175 was isolated. The transcription start sites of the OsChia1;175 gene were mapped by primer extension analysis. The 1.2 kb putative promoter region of the OsChia1;175 gene was fused to the GUS (β-glucuronidase) gene, and this chimeric gene was introduced to rice by Agrobacterium-mediated transformation. The flower-predominant gene expression was identified also in the transgenic rice plants. The high promoter activity was detected in the stigmas, styles, stamens and lodicules in transgenic plants. The possible functions of OsChia1;175 are discussed.

Journal

Plant Molecular BiologySpringer Journals

Published: Oct 16, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off