Flow temporal reconstruction from non time-resolved data part II: practical implementation, methodology validation, and applications

Flow temporal reconstruction from non time-resolved data part II: practical implementation,... This paper proposes a method to sort experimental snapshots of a periodic flow using information from the first three POD coefficients. Even in presence of turbulence, phase-average flow fields are reconstructed with this novel technique. The main objective is to identify and track traveling coherent structures in these pseudo periodic flows. This provides a tool for shedding light on flow dynamics and allows for dynamical contents comparison, instead of using mean statistics or traditional point-based correlation techniques. To evaluate the performance of the technique, apart from a laminar test on the relative strength of the POD modes, four additional tests have been performed. In the first of these tests, time-resolved PIV measurements of a turbulent flow with an externally forced main frequency allows to compare real phase-locked average data with reconstructed phase obtained using the technique proposed in the paper. The reconstruction technique is then applied to a set of non-forced, non time-resolved Stereo PIV measurements in an atmospheric burner, under combustion conditions. Besides checking that the reconstruction on different planes matches, there is no indication of the magnitude of the error for the proposed technique. In order to obtain some data regarding this aspect, two additional tests are performed on simulated non-externally forced laminar flows with the addition of a digital filter resembling turbulence (Klein et al. in J Comput Phys 186:652–665, 2003). With this information, the limitation of the technique applicability to periodic flows including turbulence or secondary frequency features is further discussed on the basis of the relative strength of the Proper Orthogonal Decomposition (POD) modes. The discussion offered indicates coherence between the reconstructed results and those obtained in the simulations. In addition, it allows defining a threshold parameter that indicates when the proposed technique is suitable or not. For those researchers interested on the background and possible generalizations of the technique, part I of this work (Legrand et al. in Exp Fluid (submitted in 2010) 2011) offers the mathematic fundamentals of the general space–time reconstruction technique using POD coefficients. Noteworthy, the involved computational time is relatively small: all the reconstructions have been performed in the order of minutes. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Flow temporal reconstruction from non time-resolved data part II: practical implementation, methodology validation, and applications

Loading next page...
 
/lp/springer_journal/flow-temporal-reconstruction-from-non-time-resolved-data-part-ii-ZPAopntfE3
Publisher
Springer-Verlag
Copyright
Copyright © 2011 by Springer-Verlag
Subject
Engineering; Engineering Fluid Dynamics; Engineering Thermodynamics, Heat and Mass Transfer; Fluid- and Aerodynamics
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-011-1113-3
Publisher site
See Article on Publisher Site

Abstract

This paper proposes a method to sort experimental snapshots of a periodic flow using information from the first three POD coefficients. Even in presence of turbulence, phase-average flow fields are reconstructed with this novel technique. The main objective is to identify and track traveling coherent structures in these pseudo periodic flows. This provides a tool for shedding light on flow dynamics and allows for dynamical contents comparison, instead of using mean statistics or traditional point-based correlation techniques. To evaluate the performance of the technique, apart from a laminar test on the relative strength of the POD modes, four additional tests have been performed. In the first of these tests, time-resolved PIV measurements of a turbulent flow with an externally forced main frequency allows to compare real phase-locked average data with reconstructed phase obtained using the technique proposed in the paper. The reconstruction technique is then applied to a set of non-forced, non time-resolved Stereo PIV measurements in an atmospheric burner, under combustion conditions. Besides checking that the reconstruction on different planes matches, there is no indication of the magnitude of the error for the proposed technique. In order to obtain some data regarding this aspect, two additional tests are performed on simulated non-externally forced laminar flows with the addition of a digital filter resembling turbulence (Klein et al. in J Comput Phys 186:652–665, 2003). With this information, the limitation of the technique applicability to periodic flows including turbulence or secondary frequency features is further discussed on the basis of the relative strength of the Proper Orthogonal Decomposition (POD) modes. The discussion offered indicates coherence between the reconstructed results and those obtained in the simulations. In addition, it allows defining a threshold parameter that indicates when the proposed technique is suitable or not. For those researchers interested on the background and possible generalizations of the technique, part I of this work (Legrand et al. in Exp Fluid (submitted in 2010) 2011) offers the mathematic fundamentals of the general space–time reconstruction technique using POD coefficients. Noteworthy, the involved computational time is relatively small: all the reconstructions have been performed in the order of minutes.

Journal

Experiments in FluidsSpringer Journals

Published: May 7, 2011

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off