Flow structure and skin friction in the vicinity of a streamwise-angled injection hole fed by a short pipe

Flow structure and skin friction in the vicinity of a streamwise-angled injection hole fed by a... The velocity field and skin friction distribution around a row of five jets issuing into a crossflow from short (L/D ≃ 1) pipes inclined by 35° with respect to the streamwise direction, (i.e., “short holes”) are presented for two different jet supply flow directions. Velocity was measured using PIV, while the skin friction was measured with oil-film interferometry. The flow features are compared with previously published data for jets issuing through holes oriented normal to the crossflow and with numerical simulations of similar geometries. The distinguishing features of the flow field include a reduced recirculation region in comparison to the 90° case and markedly different in-hole flow physics. The jetting process caused by in-hole separations force the bulk of the jet fluid to issue from the leading half of the streamwise-angled injection hole, as previously reported by Brundage et al. (Tech Rep ASME 99-GT-35, 1999) and predicted by Walters and Leylek (ASME J Turbomach 122:101–112, 2000). The flow structure impacts the skin friction distribution around the holes, resulting in higher near-hole shear stress for a counter-flow supply plenum (jet fluid supplied by a high speed plenum flowing opposite to the free stream direction). In contrast, the counter-flow supply plenum was previously found to have the lowest near-hole wall shear stress for normal injection holes (Peterson and Plesniak in Exp Fluids 37:497–503, 2004b). Streamwise-angled injection generally reduces the near-hole skin friction due to the reduced jet trajectory resulting from the lower wall-normal jet momentum. Far downstream, the skin friction distributions are similar for the two injection angle cases. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Flow structure and skin friction in the vicinity of a streamwise-angled injection hole fed by a short pipe

Loading next page...
Copyright © 2007 by Springer-Verlag
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial