Flow measurement on an oscillating pipe flow near the entrance using the UVP method

Flow measurement on an oscillating pipe flow near the entrance using the UVP method  The authors have carried out a study to investigate and clarify the characteristics of purely oscillating pipe flows over the developing region. The main objective of this study is to establish the method of time-dependent velocity profiles obtained by the ultrasonic velocity profile (UVP) measurement method. First, the relationship between the test fluids and the microparticles, as reflectors of ultrasonic pulses, was investigated. In addition, the relationship between the sound speeds of the test fluids and the wall materials was studied. Second, the UVP was used to obtain the instantaneous velocity profiles in oscillating pipe flows, and the developing characteristics of the flows were analyzed. Finally, the “entrance length” (by analogy with a unidirectional pipe flow) required for oscillating pipe flows was analyzed by examining the amplitude of the harmonic spectral components of the oscillating frequency. A fast Fourier transform (FFT) is proposed as the applicable method to estimate the “entrance length”. From the Fourier transform of the velocity on the centerline, nonlinear oscillation of fluid occurs in the “entrance length” of the oscillating flows, and the viscous dissipation of the higher-order velocity harmoncis determines the entrance region. The “entrance length” can be obtained from the dissipation length of the third-order harmonic. These results prove that the UVP method is highly applicable to carry out the flow measurement in the “entrance length” of oscillating pipe flow. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Flow measurement on an oscillating pipe flow near the entrance using the UVP method

Loading next page...
 
/lp/springer_journal/flow-measurement-on-an-oscillating-pipe-flow-near-the-entrance-using-ZizJJ704mz
Publisher
Springer Journals
Copyright
Copyright © 2002 by Springer-Verlag Berlin Heidelberg
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s003480100367
Publisher site
See Article on Publisher Site

Abstract

 The authors have carried out a study to investigate and clarify the characteristics of purely oscillating pipe flows over the developing region. The main objective of this study is to establish the method of time-dependent velocity profiles obtained by the ultrasonic velocity profile (UVP) measurement method. First, the relationship between the test fluids and the microparticles, as reflectors of ultrasonic pulses, was investigated. In addition, the relationship between the sound speeds of the test fluids and the wall materials was studied. Second, the UVP was used to obtain the instantaneous velocity profiles in oscillating pipe flows, and the developing characteristics of the flows were analyzed. Finally, the “entrance length” (by analogy with a unidirectional pipe flow) required for oscillating pipe flows was analyzed by examining the amplitude of the harmonic spectral components of the oscillating frequency. A fast Fourier transform (FFT) is proposed as the applicable method to estimate the “entrance length”. From the Fourier transform of the velocity on the centerline, nonlinear oscillation of fluid occurs in the “entrance length” of the oscillating flows, and the viscous dissipation of the higher-order velocity harmoncis determines the entrance region. The “entrance length” can be obtained from the dissipation length of the third-order harmonic. These results prove that the UVP method is highly applicable to carry out the flow measurement in the “entrance length” of oscillating pipe flow.

Journal

Experiments in FluidsSpringer Journals

Published: Feb 1, 2002

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off