Flow control over an undulating membrane

Flow control over an undulating membrane The flow along a flexible membrane forced to undulate in the form of a streamwise travelling wave pattern is studied experimentally in detail. Flow field and force measurements confirm that the form drag of the wavy wall is significantly reduced when starting the undulatory motion. A mechanical model of an undulating membrane was built, based on previous investigations described in literature, and placed in an open water channel. The motion pattern of the membrane was prescribed in such a way to achieve a downstream travelling wave with increasing amplitude. The exploratory focus laid on the identification of hydrodynamic mechanisms of drag reduction due to undulatory motion. The wave-speed c of the travelling wave was set proportional to the incoming flow velocity U, according to an optimum ratio identified by previous numerical and experimental investigations. Poisson’s equation for the pressure was used to calculate the 2D pressure field from the experimental data of the unsteady flow field. In addition, the integral drag force of the membrane, as a function of c/U, was measured with a force balance to compare with previous published numerical findings. Furthermore, the velocities close to the surface of the membrane were measured, and the boundary layer profiles were determined. The resulting normalised velocity profiles affirm an oscillation between laminar and turbulent flow over one period of the motion. The results are in good agreement with previous experimental and numerical findings. Additionally, the characteristics of the flow along a travelling wave with increasing amplitude are discussed in more detail. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Flow control over an undulating membrane

Loading next page...
 
/lp/springer_journal/flow-control-over-an-undulating-membrane-u5xkMZEfZi
Publisher
Springer-Verlag
Copyright
Copyright © 2010 by Springer-Verlag
Subject
Engineering; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer; Engineering Fluid Dynamics
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-010-0981-2
Publisher site
See Article on Publisher Site

Abstract

The flow along a flexible membrane forced to undulate in the form of a streamwise travelling wave pattern is studied experimentally in detail. Flow field and force measurements confirm that the form drag of the wavy wall is significantly reduced when starting the undulatory motion. A mechanical model of an undulating membrane was built, based on previous investigations described in literature, and placed in an open water channel. The motion pattern of the membrane was prescribed in such a way to achieve a downstream travelling wave with increasing amplitude. The exploratory focus laid on the identification of hydrodynamic mechanisms of drag reduction due to undulatory motion. The wave-speed c of the travelling wave was set proportional to the incoming flow velocity U, according to an optimum ratio identified by previous numerical and experimental investigations. Poisson’s equation for the pressure was used to calculate the 2D pressure field from the experimental data of the unsteady flow field. In addition, the integral drag force of the membrane, as a function of c/U, was measured with a force balance to compare with previous published numerical findings. Furthermore, the velocities close to the surface of the membrane were measured, and the boundary layer profiles were determined. The resulting normalised velocity profiles affirm an oscillation between laminar and turbulent flow over one period of the motion. The results are in good agreement with previous experimental and numerical findings. Additionally, the characteristics of the flow along a travelling wave with increasing amplitude are discussed in more detail.

Journal

Experiments in FluidsSpringer Journals

Published: Sep 30, 2010

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off