Flow characterization using PIV measurements in a low aspect ratio randomly packed porous bed

Flow characterization using PIV measurements in a low aspect ratio randomly packed porous bed Low aspect ratio porous beds (bed width to bead diameter) have engineering applications such as catalytic reactors, combustors and heat exchangers. The nature of the packing within the bed and the influence of the near-wall region especially for randomly packed beds are expected to affect the velocity field and consequently the statistical characteristics of the flow. Planar PIV measurements were taken using refractive index matching at discrete locations throughout a randomly packed bed with aspect ratio of 4.67 for steady, low pore Reynolds number flows, Re pore ~ 4. Details of the measurement uncertainties as well as methods to determine local magnification and determination of the dynamic velocity range are presented. The data are analyzed using the PIV correlation averaging method with the largest velocity uncertainties arising from out-of-plane motion. Results show the correspondence with the geometric and velocity correlation functions across the bed and that the centerline of the bed shows a random-like distribution of velocity with an integral length scale on the order of one hydraulic diameter (or 0.38 bead diameters based on the porosity for this bed). The velocity variance is shown to increase by a factor of 1.8 when comparing the center plane data versus using data across the entire bed. It is shown that the large velocity variance contributes strongly to increased dispersion estimates and that based on the center plane data of the variance and integral length scales, the dispersion coefficient matches well with that measured in high aspect ratio beds using global data. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Flow characterization using PIV measurements in a low aspect ratio randomly packed porous bed

Loading next page...
Copyright © 2013 by Springer-Verlag Berlin Heidelberg
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial