Flow characterization using PIV measurements in a low aspect ratio randomly packed porous bed

Flow characterization using PIV measurements in a low aspect ratio randomly packed porous bed Low aspect ratio porous beds (bed width to bead diameter) have engineering applications such as catalytic reactors, combustors and heat exchangers. The nature of the packing within the bed and the influence of the near-wall region especially for randomly packed beds are expected to affect the velocity field and consequently the statistical characteristics of the flow. Planar PIV measurements were taken using refractive index matching at discrete locations throughout a randomly packed bed with aspect ratio of 4.67 for steady, low pore Reynolds number flows, Re pore ~ 4. Details of the measurement uncertainties as well as methods to determine local magnification and determination of the dynamic velocity range are presented. The data are analyzed using the PIV correlation averaging method with the largest velocity uncertainties arising from out-of-plane motion. Results show the correspondence with the geometric and velocity correlation functions across the bed and that the centerline of the bed shows a random-like distribution of velocity with an integral length scale on the order of one hydraulic diameter (or 0.38 bead diameters based on the porosity for this bed). The velocity variance is shown to increase by a factor of 1.8 when comparing the center plane data versus using data across the entire bed. It is shown that the large velocity variance contributes strongly to increased dispersion estimates and that based on the center plane data of the variance and integral length scales, the dispersion coefficient matches well with that measured in high aspect ratio beds using global data. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Flow characterization using PIV measurements in a low aspect ratio randomly packed porous bed

Loading next page...
 
/lp/springer_journal/flow-characterization-using-piv-measurements-in-a-low-aspect-ratio-5NQG0u8bey
Publisher
Springer Journals
Copyright
Copyright © 2013 by Springer-Verlag Berlin Heidelberg
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-013-1497-3
Publisher site
See Article on Publisher Site

Abstract

Low aspect ratio porous beds (bed width to bead diameter) have engineering applications such as catalytic reactors, combustors and heat exchangers. The nature of the packing within the bed and the influence of the near-wall region especially for randomly packed beds are expected to affect the velocity field and consequently the statistical characteristics of the flow. Planar PIV measurements were taken using refractive index matching at discrete locations throughout a randomly packed bed with aspect ratio of 4.67 for steady, low pore Reynolds number flows, Re pore ~ 4. Details of the measurement uncertainties as well as methods to determine local magnification and determination of the dynamic velocity range are presented. The data are analyzed using the PIV correlation averaging method with the largest velocity uncertainties arising from out-of-plane motion. Results show the correspondence with the geometric and velocity correlation functions across the bed and that the centerline of the bed shows a random-like distribution of velocity with an integral length scale on the order of one hydraulic diameter (or 0.38 bead diameters based on the porosity for this bed). The velocity variance is shown to increase by a factor of 1.8 when comparing the center plane data versus using data across the entire bed. It is shown that the large velocity variance contributes strongly to increased dispersion estimates and that based on the center plane data of the variance and integral length scales, the dispersion coefficient matches well with that measured in high aspect ratio beds using global data.

Journal

Experiments in FluidsSpringer Journals

Published: Mar 26, 2013

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off