Flood pulse trophic dynamics of larval fishes in a restored arid-land, river-floodplain, Middle Rio Grande, Los Lunas, New Mexico

Flood pulse trophic dynamics of larval fishes in a restored arid-land, river-floodplain, Middle... Rio Grande water is intensively managed and regulated by international and interstate compacts, Native American treaties, local water rights, and federal, state, and local agencies. Legislation and engineering projects in the early twentieth century brought about water impoundment projects and channelization of the Rio Grande which led to the eventual loss of floodplain habitats. In particular, current water management practices in the Middle Rio Grande (MRG) have altered the natural flood regime altering the riparian community and floodplain dynamics which may be causing the demise of many fish species by altering food web processes. The Rio Grande silvery minnow (Hybognathus amarus), a federally endangered species, has been classified as an herbivore, detritivore, or carnivore. During low flow conditions H. amarus is primarily an algivore; however, during flood conditions, hydrodynamic scouring reduces or eliminates benthic algal food sources. The objective of this study was to identify and characterize food resources and trophic interactions for H. amarus on a restored floodplain during an extended flood-pulse release from reservoirs using stable isotope analyses (δ13C and δ15N) and paleolimnology techniques. Results from stable isotope ratios indicate that H. amarus obtained carbon primarily from chironomids while aquatic invertebrates (including chironomids) obtained their carbon from macrophytes. Results from the GLIMMIX procedure indicate that the range of isotopic signatures for prey items was much broader at parallel habitats (i.e. floodplain flow parallel to main stem flow) than perpendicular (i.e. floodplain flow perpendicular to main stem flow) or leeward habitats (i.e. leeward sides of island where flow was near zero) indicating a wider selection of food resources. This study suggests that increased duration of floodplain inundation in the MRG provides vital habitats for spawning, nursery, and recruitment of threatened and endangered fish species. A combination of allochthonous and autochthonous resources best describes the nutrient and energy transfers for the Los Lunas, NM restored floodplain. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Reviews in Fish Biology and Fisheries Springer Journals

Flood pulse trophic dynamics of larval fishes in a restored arid-land, river-floodplain, Middle Rio Grande, Los Lunas, New Mexico

Loading next page...
 
/lp/springer_journal/flood-pulse-trophic-dynamics-of-larval-fishes-in-a-restored-arid-land-K2XUeZd5bR
Publisher
Springer Journals
Copyright
Copyright © 2013 by Springer Science+Business Media Dordrecht (outside the USA)
Subject
Life Sciences; Freshwater & Marine Ecology; Zoology
ISSN
0960-3166
eISSN
1573-5184
D.O.I.
10.1007/s11160-013-9313-y
Publisher site
See Article on Publisher Site

Abstract

Rio Grande water is intensively managed and regulated by international and interstate compacts, Native American treaties, local water rights, and federal, state, and local agencies. Legislation and engineering projects in the early twentieth century brought about water impoundment projects and channelization of the Rio Grande which led to the eventual loss of floodplain habitats. In particular, current water management practices in the Middle Rio Grande (MRG) have altered the natural flood regime altering the riparian community and floodplain dynamics which may be causing the demise of many fish species by altering food web processes. The Rio Grande silvery minnow (Hybognathus amarus), a federally endangered species, has been classified as an herbivore, detritivore, or carnivore. During low flow conditions H. amarus is primarily an algivore; however, during flood conditions, hydrodynamic scouring reduces or eliminates benthic algal food sources. The objective of this study was to identify and characterize food resources and trophic interactions for H. amarus on a restored floodplain during an extended flood-pulse release from reservoirs using stable isotope analyses (δ13C and δ15N) and paleolimnology techniques. Results from stable isotope ratios indicate that H. amarus obtained carbon primarily from chironomids while aquatic invertebrates (including chironomids) obtained their carbon from macrophytes. Results from the GLIMMIX procedure indicate that the range of isotopic signatures for prey items was much broader at parallel habitats (i.e. floodplain flow parallel to main stem flow) than perpendicular (i.e. floodplain flow perpendicular to main stem flow) or leeward habitats (i.e. leeward sides of island where flow was near zero) indicating a wider selection of food resources. This study suggests that increased duration of floodplain inundation in the MRG provides vital habitats for spawning, nursery, and recruitment of threatened and endangered fish species. A combination of allochthonous and autochthonous resources best describes the nutrient and energy transfers for the Los Lunas, NM restored floodplain.

Journal

Reviews in Fish Biology and FisheriesSpringer Journals

Published: Aug 9, 2013

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off