Flexible high-order QAM transmitters for elastic optical networks

Flexible high-order QAM transmitters for elastic optical networks In order to adapt to the dynamics in the future optical networks, we propose and experimentally demonstrate two flexible high-order quadrature amplitude modulation (QAM) transmitter schemes: (a) a flexible transmitter using a tandem in-phase/quadrature modulators for generating 16QAM, 32QAM, 64QAM signals; and (b) a scheme based on monolithically integrated quad-Mach–Zehnder in-phase/quadrature with binary driving electronics for synthesizing minimum phase-shift keying (MSK), quadrature phase-shift-keying (QPSK), 8-ary phase-shift keying (8PSK), and 16QAM. These schemes provide different approaches to configure a flexible high-order QAM transmitter, either using cascaded off-the-shelf modulators or via highly integrated monolithic modulator. These flexible and reconfigurable transmitter schemes exhibit different characteristics in terms of system performance, which provides the network operators different flexible transmitter solutions suitable for different application scenarios in elastic optical networks. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Photonic Network Communications Springer Journals

Flexible high-order QAM transmitters for elastic optical networks

Loading next page...
 
/lp/springer_journal/flexible-high-order-qam-transmitters-for-elastic-optical-networks-iItWnYASLw
Publisher
Springer US
Copyright
Copyright © 2015 by Springer Science+Business Media New York
Subject
Computer Science; Computer Communication Networks; Electrical Engineering; Characterization and Evaluation of Materials
ISSN
1387-974X
eISSN
1572-8188
D.O.I.
10.1007/s11107-015-0548-5
Publisher site
See Article on Publisher Site

Abstract

In order to adapt to the dynamics in the future optical networks, we propose and experimentally demonstrate two flexible high-order quadrature amplitude modulation (QAM) transmitter schemes: (a) a flexible transmitter using a tandem in-phase/quadrature modulators for generating 16QAM, 32QAM, 64QAM signals; and (b) a scheme based on monolithically integrated quad-Mach–Zehnder in-phase/quadrature with binary driving electronics for synthesizing minimum phase-shift keying (MSK), quadrature phase-shift-keying (QPSK), 8-ary phase-shift keying (8PSK), and 16QAM. These schemes provide different approaches to configure a flexible high-order QAM transmitter, either using cascaded off-the-shelf modulators or via highly integrated monolithic modulator. These flexible and reconfigurable transmitter schemes exhibit different characteristics in terms of system performance, which provides the network operators different flexible transmitter solutions suitable for different application scenarios in elastic optical networks.

Journal

Photonic Network CommunicationsSpringer Journals

Published: Aug 23, 2015

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off