FLEXIBLE CULM 1 encoding a cinnamyl-alcohol dehydrogenase controls culm mechanical strength in rice

FLEXIBLE CULM 1 encoding a cinnamyl-alcohol dehydrogenase controls culm mechanical strength in rice Culm mechanical strength is an important agronomic trait in crop breeding. To understand the molecular mechanisms that control culm mechanical strength, we identified a flexible culm1 (fc1) mutant by screening a rice T-DNA insertion mutant library. This mutant exhibited an abnormal development phenotype, including late heading time, semi-dwarf habit, and flexible culm. In this study, we cloned the FLEXIBLE CULM1 (FC1) gene in rice using a T-DNA tagging approach. FC1 encodes a cinnamyl-alcohol dehydrogenase and is mainly expressed in the sclerenchyma cells of the secondary cell wall and vascular bundle region. In these types of cells, a deficiency of FC1 in the fc1 mutant caused a reduction in cell wall thickness, as well as a decrease in lignin. Extracts from the first internodes and panicles of the fc1 plants exhibited drastically reduced cinnamyl-alcohol dehydrogenase activity. Further histological and biochemical analyses revealed that the p-hydroxyphenyl and guaiacyl monomers in fc1 cell wall were reduced greatly. Our results indicated that FC1 plays an important role in the biosynthesis of lignin and the control of culm strength in rice. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

FLEXIBLE CULM 1 encoding a cinnamyl-alcohol dehydrogenase controls culm mechanical strength in rice

Loading next page...
 
/lp/springer_journal/flexible-culm-1-encoding-a-cinnamyl-alcohol-dehydrogenase-controls-DavKkd2Tuw
Publisher
Springer Netherlands
Copyright
Copyright © 2008 by Springer Science+Business Media B.V.
Subject
Life Sciences; Plant Pathology; Biochemistry, general; Plant Sciences
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1007/s11103-008-9448-8
Publisher site
See Article on Publisher Site

Abstract

Culm mechanical strength is an important agronomic trait in crop breeding. To understand the molecular mechanisms that control culm mechanical strength, we identified a flexible culm1 (fc1) mutant by screening a rice T-DNA insertion mutant library. This mutant exhibited an abnormal development phenotype, including late heading time, semi-dwarf habit, and flexible culm. In this study, we cloned the FLEXIBLE CULM1 (FC1) gene in rice using a T-DNA tagging approach. FC1 encodes a cinnamyl-alcohol dehydrogenase and is mainly expressed in the sclerenchyma cells of the secondary cell wall and vascular bundle region. In these types of cells, a deficiency of FC1 in the fc1 mutant caused a reduction in cell wall thickness, as well as a decrease in lignin. Extracts from the first internodes and panicles of the fc1 plants exhibited drastically reduced cinnamyl-alcohol dehydrogenase activity. Further histological and biochemical analyses revealed that the p-hydroxyphenyl and guaiacyl monomers in fc1 cell wall were reduced greatly. Our results indicated that FC1 plays an important role in the biosynthesis of lignin and the control of culm strength in rice.

Journal

Plant Molecular BiologySpringer Journals

Published: Dec 31, 2008

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off