Flapping flexible fish

Flapping flexible fish In order to analyze and model the body kinematics used by fish in a wide range of swimming behaviors, we developed a technique to separate the periodic whole-body motions that characterize steady swimming from the secular motions that characterize changes in whole-body shape. We applied this harmonic analysis technique to the study of the forward and backward swimming of lamprey. We found that in order to vary the unsteadiness of swimming, lamprey superimpose periodic and secular components of their body motion, modulate the patterns and magnitudes of those components, and change shape. These kinematic results suggest the following hydromechanical hypothesis: steady swimming is a maneuver that requires active suppression of secular body reconfigurations. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals
Loading next page...
 
/lp/springer_journal/flapping-flexible-fish-zlyn1Cdia5
Publisher
Springer-Verlag
Copyright
Copyright © 2007 by Springer-Verlag
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-007-0346-7
Publisher site
See Article on Publisher Site

Abstract

In order to analyze and model the body kinematics used by fish in a wide range of swimming behaviors, we developed a technique to separate the periodic whole-body motions that characterize steady swimming from the secular motions that characterize changes in whole-body shape. We applied this harmonic analysis technique to the study of the forward and backward swimming of lamprey. We found that in order to vary the unsteadiness of swimming, lamprey superimpose periodic and secular components of their body motion, modulate the patterns and magnitudes of those components, and change shape. These kinematic results suggest the following hydromechanical hypothesis: steady swimming is a maneuver that requires active suppression of secular body reconfigurations.

Journal

Experiments in FluidsSpringer Journals

Published: Jul 13, 2007

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off