Flame liftoff height dependence on geometrically modified bluffbodies in a vitiated flow

Flame liftoff height dependence on geometrically modified bluffbodies in a vitiated flow In this study, the improvement of liftoff height of bluffbody-stabilized, partially premixed methane flames and the change of flow field in the recirculation zone of bluffbodies, of variously modified base geometries, are investigated in a high temperature (~1,315 K) vitiated flow. The basic geometry of the bluffbody consists of a two-dimensional rectangular body with a rounded nose with fuel jets being discharged from the body at several locations upstream of the base. Flame liftoff height measurements are characterized by CH chemiluminescence, while the three-dimensional flow field is determined using stereo particle image velocimetry (PIV). The lowest liftoff height is observed when the geometric modifications from the original rectangular bluffbody base are carried out such that the base has three-dimensional local cavities together with two-dimensionally modified geometries. PIV measurements show that the improvement of liftoff height is primarily attributed to an intense recirculation induced by multi-dimensional vortex structures in the presence of the two- and three-dimensionally modified base. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Flame liftoff height dependence on geometrically modified bluffbodies in a vitiated flow

Loading next page...
 
/lp/springer_journal/flame-liftoff-height-dependence-on-geometrically-modified-bluffbodies-B4JKahNKH0
Publisher
Springer-Verlag
Copyright
Copyright © 2009 by Springer-Verlag
Subject
Engineering; Engineering Thermodynamics, Heat and Mass Transfer; Fluid- and Aerodynamics; Engineering Fluid Dynamics
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-009-0733-3
Publisher site
See Article on Publisher Site

Abstract

In this study, the improvement of liftoff height of bluffbody-stabilized, partially premixed methane flames and the change of flow field in the recirculation zone of bluffbodies, of variously modified base geometries, are investigated in a high temperature (~1,315 K) vitiated flow. The basic geometry of the bluffbody consists of a two-dimensional rectangular body with a rounded nose with fuel jets being discharged from the body at several locations upstream of the base. Flame liftoff height measurements are characterized by CH chemiluminescence, while the three-dimensional flow field is determined using stereo particle image velocimetry (PIV). The lowest liftoff height is observed when the geometric modifications from the original rectangular bluffbody base are carried out such that the base has three-dimensional local cavities together with two-dimensionally modified geometries. PIV measurements show that the improvement of liftoff height is primarily attributed to an intense recirculation induced by multi-dimensional vortex structures in the presence of the two- and three-dimensionally modified base.

Journal

Experiments in FluidsSpringer Journals

Published: Aug 26, 2009

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off