Fishing-induced changes in predation pressure by perch (Perca fluviatilis) regulate littoral benthic macroinvertebrate biomass, density, and community structure

Fishing-induced changes in predation pressure by perch (Perca fluviatilis) regulate littoral... We aimed to study whether the varying changes in predation pressure by perch (Perca fluviatilis) reflect the biomass, density, and community structure of the benthic macroinvertebrates. Prey preference is size-dependent, and overall predation pressure is density dependent, and thus the size structure of the P. fluviatilis population should affect the structure of the macroinvertebrate community, and the population density of P. fluviatilis should reflect the overall density of benthic macroinvertebrates. We sampled the littoral benthic community in a boreal lake that had been divided into two parts that were subjected to two different fishing procedures during 2007–2012 period and analyzed the macroinvertebrate diet of fish. The benthic macroinvertebrate community reflected the predation pressure. Total macroinvertebrate biomass increased during the study period in the lake division with a non-size-selective fishing procedure (NSF), i.e., all invertivorous perch size-classes targeted, but decreased in the section with negatively size-selective fishing procedure (SSF), i.e., large invertivorous individuals ≥ 16 cm were not targeted. This difference was a result of the increase in large-sized species, such as Odonata, for the NSF procedure and decrease in the SSF procedure. In contrast to total biomass, total macroinvertebrate density did not show a response to predator size structure but rather total macroinvertebrate density decreased with increasing fish density. The study demonstrates the effect of predation pressure of P. fluviatilis on benthic communities, thus highlighting the keystone predator role of the species in boreal lakes and gives more insight on the multiple effects of fish predation on littoral benthic communities. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Aquatic Ecology Springer Journals

Fishing-induced changes in predation pressure by perch (Perca fluviatilis) regulate littoral benthic macroinvertebrate biomass, density, and community structure

Loading next page...
 
/lp/springer_journal/fishing-induced-changes-in-predation-pressure-by-perch-perca-7RSw1aa9uc
Publisher
Springer Netherlands
Copyright
Copyright © 2017 by Springer Science+Business Media B.V.
Subject
Life Sciences; Freshwater & Marine Ecology; Ecosystems
ISSN
1386-2588
eISSN
1573-5125
D.O.I.
10.1007/s10452-017-9641-4
Publisher site
See Article on Publisher Site

Abstract

We aimed to study whether the varying changes in predation pressure by perch (Perca fluviatilis) reflect the biomass, density, and community structure of the benthic macroinvertebrates. Prey preference is size-dependent, and overall predation pressure is density dependent, and thus the size structure of the P. fluviatilis population should affect the structure of the macroinvertebrate community, and the population density of P. fluviatilis should reflect the overall density of benthic macroinvertebrates. We sampled the littoral benthic community in a boreal lake that had been divided into two parts that were subjected to two different fishing procedures during 2007–2012 period and analyzed the macroinvertebrate diet of fish. The benthic macroinvertebrate community reflected the predation pressure. Total macroinvertebrate biomass increased during the study period in the lake division with a non-size-selective fishing procedure (NSF), i.e., all invertivorous perch size-classes targeted, but decreased in the section with negatively size-selective fishing procedure (SSF), i.e., large invertivorous individuals ≥ 16 cm were not targeted. This difference was a result of the increase in large-sized species, such as Odonata, for the NSF procedure and decrease in the SSF procedure. In contrast to total biomass, total macroinvertebrate density did not show a response to predator size structure but rather total macroinvertebrate density decreased with increasing fish density. The study demonstrates the effect of predation pressure of P. fluviatilis on benthic communities, thus highlighting the keystone predator role of the species in boreal lakes and gives more insight on the multiple effects of fish predation on littoral benthic communities.

Journal

Aquatic EcologySpringer Journals

Published: Oct 20, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off