Fish Gill Respiratory Cells in Culture: A New Model for Cl−-secreting Epithelia

Fish Gill Respiratory Cells in Culture: A New Model for Cl−-secreting Epithelia Primary cultures of sea bass gill cells grown on permeable membranes form a confluent, polarized, functional tight epithelium as characterized by electron microscopy and electrophysiological and ion transport studies. Cultured with normal fetal bovine serum (FBS) and mounted in an Ussing chamber, the epithelium presents a small short-circuit current (I sc : 1.4 ± 0.3 μA/cm2), a transepithelial voltage (V t ) of 12.7 ± 2.7 mV (serosal positive) and a high transepithelial resistance (R t : 12302 ± 2477 Ω× cm2). A higher degree of differentiation and increased ion transport capacities are observed with cells cultured with sea bass serum: numerous, organized microridges characteristic of respiratory cells are present on the apical cell surface and there are increased I sc (11.9 ± 2.5 μA/cm2) and V t (25.9 ± 1.7 mV) and reduced R t (4271 ± 568 Ω× cm2) as compared with FBS-treated cells. Apical amiloride addition (up to 100 μm) had no effect on I sc . The I sc , correlated with an active Cl− secretion measured as the difference between 36Cl− unidirectional fluxes, was partly blocked by serosal ouabain, bumetanide, DIDS or apical DPC or NPPB and stimulated by serosal dB-cAMP. It is concluded that the chloride secretion is mediated by a Na+/K+/2Cl− cotransport and a Cl−/HCO3 − exchanger both responsible for Cl− entry through the basolateral membrane and by apical cAMP-sensitive Cl− channels. This study gives evidence of a functional, highly differentiated epithelium in cultures composed of fish gill respiratorylike cells, which could provide a useful preparation for studies on ion transport and their regulation. Furthermore, the chloride secretion through these cultures of respiratorylike cells makes it necessary to reconsider the previously accepted sea water model in which the chloride cells are given the unique role of ion transport through fish gills. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

Fish Gill Respiratory Cells in Culture: A New Model for Cl−-secreting Epithelia

Loading next page...
 
/lp/springer_journal/fish-gill-respiratory-cells-in-culture-a-new-model-for-cl-secreting-PHPb8FqwMX
Publisher
Springer-Verlag
Copyright
Copyright © Inc. by 1997 Springer-Verlag New York
Subject
Life Sciences; Biochemistry, general; Human Physiology
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s002329900190
Publisher site
See Article on Publisher Site

Abstract

Primary cultures of sea bass gill cells grown on permeable membranes form a confluent, polarized, functional tight epithelium as characterized by electron microscopy and electrophysiological and ion transport studies. Cultured with normal fetal bovine serum (FBS) and mounted in an Ussing chamber, the epithelium presents a small short-circuit current (I sc : 1.4 ± 0.3 μA/cm2), a transepithelial voltage (V t ) of 12.7 ± 2.7 mV (serosal positive) and a high transepithelial resistance (R t : 12302 ± 2477 Ω× cm2). A higher degree of differentiation and increased ion transport capacities are observed with cells cultured with sea bass serum: numerous, organized microridges characteristic of respiratory cells are present on the apical cell surface and there are increased I sc (11.9 ± 2.5 μA/cm2) and V t (25.9 ± 1.7 mV) and reduced R t (4271 ± 568 Ω× cm2) as compared with FBS-treated cells. Apical amiloride addition (up to 100 μm) had no effect on I sc . The I sc , correlated with an active Cl− secretion measured as the difference between 36Cl− unidirectional fluxes, was partly blocked by serosal ouabain, bumetanide, DIDS or apical DPC or NPPB and stimulated by serosal dB-cAMP. It is concluded that the chloride secretion is mediated by a Na+/K+/2Cl− cotransport and a Cl−/HCO3 − exchanger both responsible for Cl− entry through the basolateral membrane and by apical cAMP-sensitive Cl− channels. This study gives evidence of a functional, highly differentiated epithelium in cultures composed of fish gill respiratorylike cells, which could provide a useful preparation for studies on ion transport and their regulation. Furthermore, the chloride secretion through these cultures of respiratorylike cells makes it necessary to reconsider the previously accepted sea water model in which the chloride cells are given the unique role of ion transport through fish gills.

Journal

The Journal of Membrane BiologySpringer Journals

Published: Mar 1, 1997

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off