Fischer–Tropsch synthesis on potassium-modified Fe3O4 nanoparticles

Fischer–Tropsch synthesis on potassium-modified Fe3O4 nanoparticles Synthesized magnetite (Fe3O4) nanoparticles, with an average crystallite size of 8 and 22 nm, were investigated for Fischer–Tropsch synthesis reaction to clarify the effects of iron crystallite size and a potassium promoter. The larger crystallite size of Fe3O4 without the potassium promoter showed an increased CO conversion with a lower selectivity of C5+ and olefinic hydrocarbons. This was mainly attributed to the enhanced reduction degree and an abundance of active edge sites of cube-like morphology. However, a modification of Fe3O4 nanoparticles with the potassium promoter significantly changed the product distribution by increasing C5+ and olefinic hydrocarbons with much higher CO conversions. The enhanced activity on the large crystallite size of K-modified Fe3O4 was mainly attributed to an enhanced secondary reaction of olefins formed on the active iron carbide sites. The positive effect of the potassium promoter was much significant on the larger Fe3O4 nanoparticles due to an abundant presence of potassium promoter on the outer surface of the large Fe3O4 nanoparticles with a bigger inter-particular pore diameter for an easy mass transport. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

Fischer–Tropsch synthesis on potassium-modified Fe3O4 nanoparticles

Loading next page...
 
/lp/springer_journal/fischer-tropsch-synthesis-on-potassium-modified-fe3o4-nanoparticles-nJk4DR2Mab
Publisher
Springer Netherlands
Copyright
Copyright © 2015 by Springer Science+Business Media Dordrecht
Subject
Chemistry; Catalysis; Physical Chemistry; Inorganic Chemistry
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1007/s11164-015-2360-3
Publisher site
See Article on Publisher Site

Abstract

Synthesized magnetite (Fe3O4) nanoparticles, with an average crystallite size of 8 and 22 nm, were investigated for Fischer–Tropsch synthesis reaction to clarify the effects of iron crystallite size and a potassium promoter. The larger crystallite size of Fe3O4 without the potassium promoter showed an increased CO conversion with a lower selectivity of C5+ and olefinic hydrocarbons. This was mainly attributed to the enhanced reduction degree and an abundance of active edge sites of cube-like morphology. However, a modification of Fe3O4 nanoparticles with the potassium promoter significantly changed the product distribution by increasing C5+ and olefinic hydrocarbons with much higher CO conversions. The enhanced activity on the large crystallite size of K-modified Fe3O4 was mainly attributed to an enhanced secondary reaction of olefins formed on the active iron carbide sites. The positive effect of the potassium promoter was much significant on the larger Fe3O4 nanoparticles due to an abundant presence of potassium promoter on the outer surface of the large Fe3O4 nanoparticles with a bigger inter-particular pore diameter for an easy mass transport.

Journal

Research on Chemical IntermediatesSpringer Journals

Published: Nov 25, 2015

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Access to DeepDyve database
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off