First report of isolation and molecular characterization of bubaline herpesvirus 1 (BuHV1) from Argentinean water buffaloes

First report of isolation and molecular characterization of bubaline herpesvirus 1 (BuHV1) from... Herpesviruses have mainly co-evolved with their hosts for millions of years. However, bovine herpesvirus 1 (BoHV1) and related ruminant alphaherpesviruses have been reported to cross the species barrier. Bubaline herpesvirus 1 (BuHV1) is an alphaherpesvirus closely related to BoHV1 and BoHV5. According to the serological cross-relationships between ruminant alphaherpesviruses, several surveys have studied the occurrence of BoHV1-related virus infection in wild and domestic ruminant species. Recent studies in Argentina showed an increase in serological prevalence against BoHV1 related viruses in water buffaloes ( Bubalus bubalis ) population. The aim of this study was to investigate the presence of related ruminant alphaherpesvirus in the Argentinean water buffalo population. BuHV1 was successfully isolated from 5 out of 225 buffaloes analyzed. One isolate was obtained from nasal secretions, and the others were from vaginal swabs. The buffaloes belonged to four different farms located in northeastern Argentina. The isolates were characterized as alphaherpesvirus by direct immunofluorescence using FITC-anti-BoHV1 IgG. Restriction analysis performed with Bam HI and BstE II on the complete genome showed differences between the isolates and those from BoHV1 and BoHV5 subtypes. Phylogenetic analysis on both UL27 and US6 showed similarity in tree topology. While three of the isolates grouped together with sequences of BoHV5, two other isolates clustered separately. Genetic analysis of eight concatenated sequences from all isolates and references strains showed high nucleotide sequence identity between BuHV1 and BoHV5. While three of the isolates clustered together with the BoHV5 reference strain, the last two isolates were closely related to an Australian BuHV1 strain. To our knowledge, this is the first report on the isolation and molecular characterization of BuHV1 in South America. Phylogenetic analysis suggested that two different BuHV1 lineages circulate in the Argentinean water buffalo population. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Archives of Virology Springer Journals

First report of isolation and molecular characterization of bubaline herpesvirus 1 (BuHV1) from Argentinean water buffaloes

Loading next page...
 
/lp/springer_journal/first-report-of-isolation-and-molecular-characterization-of-bubaline-eqDaJ7QI2G
Publisher
Springer Vienna
Copyright
Copyright © 2014 by Springer-Verlag Wien
Subject
Biomedicine; Virology; Medical Microbiology; Infectious Diseases
ISSN
0304-8608
eISSN
1432-8798
D.O.I.
10.1007/s00705-014-2146-8
Publisher site
See Article on Publisher Site

Abstract

Herpesviruses have mainly co-evolved with their hosts for millions of years. However, bovine herpesvirus 1 (BoHV1) and related ruminant alphaherpesviruses have been reported to cross the species barrier. Bubaline herpesvirus 1 (BuHV1) is an alphaherpesvirus closely related to BoHV1 and BoHV5. According to the serological cross-relationships between ruminant alphaherpesviruses, several surveys have studied the occurrence of BoHV1-related virus infection in wild and domestic ruminant species. Recent studies in Argentina showed an increase in serological prevalence against BoHV1 related viruses in water buffaloes ( Bubalus bubalis ) population. The aim of this study was to investigate the presence of related ruminant alphaherpesvirus in the Argentinean water buffalo population. BuHV1 was successfully isolated from 5 out of 225 buffaloes analyzed. One isolate was obtained from nasal secretions, and the others were from vaginal swabs. The buffaloes belonged to four different farms located in northeastern Argentina. The isolates were characterized as alphaherpesvirus by direct immunofluorescence using FITC-anti-BoHV1 IgG. Restriction analysis performed with Bam HI and BstE II on the complete genome showed differences between the isolates and those from BoHV1 and BoHV5 subtypes. Phylogenetic analysis on both UL27 and US6 showed similarity in tree topology. While three of the isolates grouped together with sequences of BoHV5, two other isolates clustered separately. Genetic analysis of eight concatenated sequences from all isolates and references strains showed high nucleotide sequence identity between BuHV1 and BoHV5. While three of the isolates clustered together with the BoHV5 reference strain, the last two isolates were closely related to an Australian BuHV1 strain. To our knowledge, this is the first report on the isolation and molecular characterization of BuHV1 in South America. Phylogenetic analysis suggested that two different BuHV1 lineages circulate in the Argentinean water buffalo population.

Journal

Archives of VirologySpringer Journals

Published: Nov 1, 2014

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off