Fire Recognition Based On Multi-Channel Convolutional Neural Network

Fire Recognition Based On Multi-Channel Convolutional Neural Network In recent years, fire recognition methods have received more and more attention in the fields of academy and industry. Current sensor-based recognition methods rely heavily on the external physical signals, which will probably reduce the recognition precision if the external environment changes dramatically. With the rapid development of high-definition camera, the methods based on image feature extraction provide another solution which tries to conduct pattern recognition for the monitoring video. However, these methods couldn’t be widely and successfully applied to fire detection due to two deficiencies: (1) there are too many interference items like lamplight and car highlight in the room or tunnel, which will disturb the recognition performance largely; (2) The features depend on much prior knowledge about flame and smoke, and there lacks a universal and automatic extraction method for various fire scenes. As a breakthrough in pattern recognition, deep learning is capable of exploring the useful information from raw data, and can automatically provide accurate recognition results. Therefore, based on deep learning idea, a novel fire recognition method based on multi-channel convolutional neural network is proposed in this paper to overcome the deficiencies mentioned above. First, three channel colorful images are constructed as the input of convolutional neural network; Second, the hidden layers with multiple-layer convolution and pooling are constructed, and simultaneously, the model parameters are find tuned by using back propagation; Finally, softmax method is used to conduct the classification about fire recognition. To save the training time, we utilize GPU to construct training and test models. From public fire dataset and Internet, we collect 7000 images for training and 4494 images for test, and then run experiments with the comparison of four baseline methods including deep neural network, support vector machine based on scale-invariant feature transform feature, stack auto-encoder and deep belief network. The experimental results show that the proposed method is more capable of restoring the features of input image by means of hidden output figure, and for various flame scenes and types, the proposed method can reach 98% or more classification accuracy, getting improvement of around 2% than the traditional feature-based method. Also, the proposed method always outperforms other Deep Learning methods in terms of ROC curve, recall rate, precision rate and F1-score. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Fire Technology Springer Journals

Fire Recognition Based On Multi-Channel Convolutional Neural Network

Loading next page...
 
/lp/springer_journal/fire-recognition-based-on-multi-channel-convolutional-neural-network-chA100uHS0
Publisher
Springer US
Copyright
Copyright © 2017 by Springer Science+Business Media, LLC, part of Springer Nature
Subject
Engineering; Civil Engineering; Classical Mechanics; Characterization and Evaluation of Materials; Physics, general
ISSN
0015-2684
eISSN
1572-8099
D.O.I.
10.1007/s10694-017-0695-6
Publisher site
See Article on Publisher Site

Abstract

In recent years, fire recognition methods have received more and more attention in the fields of academy and industry. Current sensor-based recognition methods rely heavily on the external physical signals, which will probably reduce the recognition precision if the external environment changes dramatically. With the rapid development of high-definition camera, the methods based on image feature extraction provide another solution which tries to conduct pattern recognition for the monitoring video. However, these methods couldn’t be widely and successfully applied to fire detection due to two deficiencies: (1) there are too many interference items like lamplight and car highlight in the room or tunnel, which will disturb the recognition performance largely; (2) The features depend on much prior knowledge about flame and smoke, and there lacks a universal and automatic extraction method for various fire scenes. As a breakthrough in pattern recognition, deep learning is capable of exploring the useful information from raw data, and can automatically provide accurate recognition results. Therefore, based on deep learning idea, a novel fire recognition method based on multi-channel convolutional neural network is proposed in this paper to overcome the deficiencies mentioned above. First, three channel colorful images are constructed as the input of convolutional neural network; Second, the hidden layers with multiple-layer convolution and pooling are constructed, and simultaneously, the model parameters are find tuned by using back propagation; Finally, softmax method is used to conduct the classification about fire recognition. To save the training time, we utilize GPU to construct training and test models. From public fire dataset and Internet, we collect 7000 images for training and 4494 images for test, and then run experiments with the comparison of four baseline methods including deep neural network, support vector machine based on scale-invariant feature transform feature, stack auto-encoder and deep belief network. The experimental results show that the proposed method is more capable of restoring the features of input image by means of hidden output figure, and for various flame scenes and types, the proposed method can reach 98% or more classification accuracy, getting improvement of around 2% than the traditional feature-based method. Also, the proposed method always outperforms other Deep Learning methods in terms of ROC curve, recall rate, precision rate and F1-score.

Journal

Fire TechnologySpringer Journals

Published: Jan 3, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off