Finitely Extendable Functionals on Vector Lattices

Finitely Extendable Functionals on Vector Lattices A general extended functional is a functional which is allowed to take on infinite values; in other words such functionals are similar to the Lebesgue integral on the space of all integrable functions. The problem of representing a general extended functional f on a vector lattice X as an operator with finite values only has been solved in [12]. In fact, this problem has been solved for a larger class of general extended operators on an ordered vector space. The solution of this problem was given by means of an extension of the range R of the functional f to some ultrapower of R. Notice, however, that it is not always the case that a functional f can be considered as a trace of some internal functional *f:*X→R. (We remark, without going into details, that such an internal functional exists exactly in the case when the results of the nonstandard analysis can be used for investigation of the given functional.) In [12] a ‘standard’ necessary and sufficient condition was given for solving this latter problem on the existence of *f. Namely, f is a trace of an internal *f if and only if it is finitely extendable. This result makes the finite extendability problem worthy of study. The present paper is a first attempt in this direction. Simultaneously we introduce and study a more general notion of weak finite extendability that coincides with finite extendability, for instance, for vector lattices with a strong unit. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Positivity Springer Journals

Finitely Extendable Functionals on Vector Lattices

Positivity , Volume 1 (3) – Oct 14, 2004

Loading next page...
 
/lp/springer_journal/finitely-extendable-functionals-on-vector-lattices-ncPNXyqtqT
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 1997 by Kluwer Academic Publishers
Subject
Mathematics; Fourier Analysis; Operator Theory; Potential Theory; Calculus of Variations and Optimal Control; Optimization; Econometrics
ISSN
1385-1292
eISSN
1572-9281
D.O.I.
10.1023/A:1009760922242
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial