Finite element simulation of pressure-loaded phase-field fractures

Finite element simulation of pressure-loaded phase-field fractures A non-standard aspect of phase-field fracture formulations for pressurized cracks is the application of the pressure loading, due to the fact that a direct notion of the fracture surfaces is absent. In this work we study the possibility to apply the pressure loading through a traction boundary condition on a contour of the phase field. Computationally this requires application of a surface-extraction algorithm to obtain a parametrization of the loading boundary. When the phase-field value of the loading contour is chosen adequately, the recovered loading contour resembles that of the sharp fracture problem. The computational scheme used to construct the immersed loading boundary is leveraged to propose a hybrid model. In this hybrid model the solid domain (outside the loading contour) is unaffected by the phase field, while a standard phase-field formulation is used in the fluid domain (inside the loading contour). We present a detailed study and comparison of the $$\varGamma$$ Γ -convergence behavior and mesh convergence behavior of both models using a one-dimensional model problem. The extension of these results to multiple dimensions is also considered. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Meccanica Springer Journals

Finite element simulation of pressure-loaded phase-field fractures

Loading next page...
 
/lp/springer_journal/finite-element-simulation-of-pressure-loaded-phase-field-fractures-FoBri9cLQ2
Publisher
Springer Netherlands
Copyright
Copyright © 2017 by The Author(s)
Subject
Physics; Classical Mechanics; Civil Engineering; Automotive Engineering; Mechanical Engineering
ISSN
0025-6455
eISSN
1572-9648
D.O.I.
10.1007/s11012-017-0802-2
Publisher site
See Article on Publisher Site

Abstract

A non-standard aspect of phase-field fracture formulations for pressurized cracks is the application of the pressure loading, due to the fact that a direct notion of the fracture surfaces is absent. In this work we study the possibility to apply the pressure loading through a traction boundary condition on a contour of the phase field. Computationally this requires application of a surface-extraction algorithm to obtain a parametrization of the loading boundary. When the phase-field value of the loading contour is chosen adequately, the recovered loading contour resembles that of the sharp fracture problem. The computational scheme used to construct the immersed loading boundary is leveraged to propose a hybrid model. In this hybrid model the solid domain (outside the loading contour) is unaffected by the phase field, while a standard phase-field formulation is used in the fluid domain (inside the loading contour). We present a detailed study and comparison of the $$\varGamma$$ Γ -convergence behavior and mesh convergence behavior of both models using a one-dimensional model problem. The extension of these results to multiple dimensions is also considered.

Journal

MeccanicaSpringer Journals

Published: Dec 12, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial