Finger-vein recognition based on parametric-oriented corrections

Finger-vein recognition based on parametric-oriented corrections The two key factors in a biometric identification system are its high identification rate and convenience of device usage. In a finger-vein identification task, these two problems often occur since the captured device of finger-vein image should accommodate the high identification rate as well as the easy-to-use device design. The finger-vein is visually invisible inside the human skin. This work develops a new finger-vein capturing device using Near-Infrared (NIR) LED light and proposes an efficient technique for finger-vein identification. The vein image may contain noise and shadows due to device lighting conditions. Parametric-Oriented Histogram Equalization (POHE) is utilized to enhance image contrast and reduce the noise effect. This work also discusses normalized issues related to the angle correction of the finger edge and Region of Interest (ROI) for width normalization. In the experimental result, the proposed method yields a clear finger-vein pattern with a superior identification rate in the recognition task compared to the state-of-the-art methods. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Multimedia Tools and Applications Springer Journals

Finger-vein recognition based on parametric-oriented corrections

Loading next page...
 
/lp/springer_journal/finger-vein-recognition-based-on-parametric-oriented-corrections-QOdNYCVtud
Publisher
Springer Journals
Copyright
Copyright © 2017 by Springer Science+Business Media New York
Subject
Computer Science; Multimedia Information Systems; Computer Communication Networks; Data Structures, Cryptology and Information Theory; Special Purpose and Application-Based Systems
ISSN
1380-7501
eISSN
1573-7721
D.O.I.
10.1007/s11042-016-4296-z
Publisher site
See Article on Publisher Site

Abstract

The two key factors in a biometric identification system are its high identification rate and convenience of device usage. In a finger-vein identification task, these two problems often occur since the captured device of finger-vein image should accommodate the high identification rate as well as the easy-to-use device design. The finger-vein is visually invisible inside the human skin. This work develops a new finger-vein capturing device using Near-Infrared (NIR) LED light and proposes an efficient technique for finger-vein identification. The vein image may contain noise and shadows due to device lighting conditions. Parametric-Oriented Histogram Equalization (POHE) is utilized to enhance image contrast and reduce the noise effect. This work also discusses normalized issues related to the angle correction of the finger edge and Region of Interest (ROI) for width normalization. In the experimental result, the proposed method yields a clear finger-vein pattern with a superior identification rate in the recognition task compared to the state-of-the-art methods.

Journal

Multimedia Tools and ApplicationsSpringer Journals

Published: Jan 6, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off