Fine-scale comparative genetic and physical mapping supports map-based cloning strategies for the self-incompatibility loci of perennial ryegrass (Lolium perenne L.)

Fine-scale comparative genetic and physical mapping supports map-based cloning strategies for the... Perennial ryegrass is an obligate outbreeding pasture grass of the Poaceae family, with a two-locus (S and Z) gametophytic self-incompatibility (SI) mechanism. This system has provided a major obstacle to targeted varietal development, and enhanced knowledge is expected to support more efficient breeding strategies. Comparative genetics and physical mapping approaches have been developed to permit molecular cloning of the SI genes. SI gene-linked genetic markers based on heterologous cDNA restriction fragment length polymorphisms (RFLPs) and homologous genomic DNA-derived simple sequence repeats (SSRs) were converted to single nucleotide polymorphism (SNP) format for efficient genotyping. Genetic mapping identified the location of SI loci and demonstrated macrosynteny between related grass species. S- and Z-linked bacterial artificial chromosome (BAC) clones were sequenced using massively parallel pyrosequencing technology to provide the first physical mapping data for Poaceae SI loci. The sequence assembly process suggested a lower prevalence of middle repetitive sequences in the Z locus region and hence precedence for positional cloning strategy. In silico mapping using data from rice, Brachypodium distachyon and Sorghum revealed high sequence conservation in the vicinity of the Z locus region between SI and self-compatible (SC) grass species. Physical mapping identified a total of nine genes encoded in the Z locus region. Expression profiling and nucleotide diversity assessment identified two Z-linked genes, LpTC116908 and LpDUF247, as plausible candidates for the male and female determinants of the S-Z SI system. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Fine-scale comparative genetic and physical mapping supports map-based cloning strategies for the self-incompatibility loci of perennial ryegrass (Lolium perenne L.)

Loading next page...
 
/lp/springer_journal/fine-scale-comparative-genetic-and-physical-mapping-supports-map-based-6BqzWlzpIY
Publisher
Springer Netherlands
Copyright
Copyright © 2009 by Springer Science+Business Media B.V.
Subject
Life Sciences; Plant Pathology; Biochemistry, general; Plant Sciences
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1007/s11103-009-9574-y
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial