Fine mapping of a quantitative trait locus qHD3-1, controlling the heading date, to a 29.5-kb DNA fragment in rice

Fine mapping of a quantitative trait locus qHD3-1, controlling the heading date, to a 29.5-kb DNA... In our previous studies, a single segment substitution line (SSSL) W23-03-8-9-1 with substituted interval of PSM301-PSM306-PSM305-PSM304-RM3894-RM3372-RM569-RM231-RM545 on chromosome 3 has been found to comprise a gene for extremely early heading date. To map this gene, the SSSL W23-03-8-9-1 was crossed with the recipient Huajingxian (HJX74) to develop an F2 segregating population. The distribution of early and late heading plants in this population fitted a segregation ratio of 3: 1, indicating that early heading was controlled by a dominant gene. Using a random sample of 520 individuals from the F2 segregation population, the qHD3-1 locus was mapped between two SSR markers, RM3894 and RM3372, with genetic distances of 1.2 and 1.1 cM, respectively. For fine mapping of qHD3-1, a large F2: 3 segregating population was developed, with 6000 individuals from the F2 plants heterozygous in the RM3894 and RM3372 regions. The analysis of recombinants in the qHD3-1 region put the gene locus into an interval of 29.5 kb flanked by the left marker 3HD8 and the right marker 3HD9. Sequence analysis of this fragment predicted eight open reading frames. One of them, ORF8, with its molecular function predicted to encode ribonuclease III activity and RNA binding, is considered the most interesting candidate gene. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

Fine mapping of a quantitative trait locus qHD3-1, controlling the heading date, to a 29.5-kb DNA fragment in rice

Loading next page...
 
/lp/springer_journal/fine-mapping-of-a-quantitative-trait-locus-qhd3-1-controlling-the-DAyRs2N1gQ
Publisher
Springer Journals
Copyright
Copyright © 2011 by Pleiades Publishing, Ltd.
Subject
Life Sciences; Plant Physiology; Plant Sciences
ISSN
1021-4437
eISSN
1608-3407
D.O.I.
10.1134/S1021443711030186
Publisher site
See Article on Publisher Site

Abstract

In our previous studies, a single segment substitution line (SSSL) W23-03-8-9-1 with substituted interval of PSM301-PSM306-PSM305-PSM304-RM3894-RM3372-RM569-RM231-RM545 on chromosome 3 has been found to comprise a gene for extremely early heading date. To map this gene, the SSSL W23-03-8-9-1 was crossed with the recipient Huajingxian (HJX74) to develop an F2 segregating population. The distribution of early and late heading plants in this population fitted a segregation ratio of 3: 1, indicating that early heading was controlled by a dominant gene. Using a random sample of 520 individuals from the F2 segregation population, the qHD3-1 locus was mapped between two SSR markers, RM3894 and RM3372, with genetic distances of 1.2 and 1.1 cM, respectively. For fine mapping of qHD3-1, a large F2: 3 segregating population was developed, with 6000 individuals from the F2 plants heterozygous in the RM3894 and RM3372 regions. The analysis of recombinants in the qHD3-1 region put the gene locus into an interval of 29.5 kb flanked by the left marker 3HD8 and the right marker 3HD9. Sequence analysis of this fragment predicted eight open reading frames. One of them, ORF8, with its molecular function predicted to encode ribonuclease III activity and RNA binding, is considered the most interesting candidate gene.

Journal

Russian Journal of Plant PhysiologySpringer Journals

Published: May 3, 2011

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off