Fine linkage and physical mapping suggests cross-over suppression with a retroposon insertion at the npc1 mutation

Fine linkage and physical mapping suggests cross-over suppression with a retroposon insertion at... Mouse Niemann-Pick disease type C1 (npc1), formerly designated spm (sphingomyelinosis), is an autosomal recessive lipid storage disorder. We generated a high-resolution linkage map in the 2.24-cM npc1 critical region by typing eight polymorphic markers in 2322 meioses (948 of these were previously reported). A minimal set of overlapping yeast artificial chromosomes (YACs) had previously been assembled (Hsu and Erickson 2000). The YAC 313-B-8, which covered this whole region, has been used to construct cosmid libraries. Three cosmid contigs were built, and one of them contained the npc1 locus. Two (CA)n microsatellites were identified, and the one new one was characterized, from the YAC-derived cosmids. The most proximal cosmid contig overlaps with markers near twirler (Tw). Both the physical map and genetic linkage map have been integrated to study the recombination frequencies in this particular region of the mouse genome, and recombination suppression due to the heterozygous insertion of DNA was suggested. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Mammalian Genome Springer Journals

Fine linkage and physical mapping suggests cross-over suppression with a retroposon insertion at the npc1 mutation

Loading next page...
 
/lp/springer_journal/fine-linkage-and-physical-mapping-suggests-cross-over-suppression-with-cOaxvcT2vK
Publisher
Springer-Verlag
Copyright
Copyright © 2000 by Springer-Verlag New York Inc.
Subject
Life Sciences; Cell Biology; Anatomy; Zoology
ISSN
0938-8990
eISSN
1432-1777
D.O.I.
10.1007/s003350010134
Publisher site
See Article on Publisher Site

Abstract

Mouse Niemann-Pick disease type C1 (npc1), formerly designated spm (sphingomyelinosis), is an autosomal recessive lipid storage disorder. We generated a high-resolution linkage map in the 2.24-cM npc1 critical region by typing eight polymorphic markers in 2322 meioses (948 of these were previously reported). A minimal set of overlapping yeast artificial chromosomes (YACs) had previously been assembled (Hsu and Erickson 2000). The YAC 313-B-8, which covered this whole region, has been used to construct cosmid libraries. Three cosmid contigs were built, and one of them contained the npc1 locus. Two (CA)n microsatellites were identified, and the one new one was characterized, from the YAC-derived cosmids. The most proximal cosmid contig overlaps with markers near twirler (Tw). Both the physical map and genetic linkage map have been integrated to study the recombination frequencies in this particular region of the mouse genome, and recombination suppression due to the heterozygous insertion of DNA was suggested.

Journal

Mammalian GenomeSpringer Journals

Published: Feb 13, 2014

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off