Access the full text.
Sign up today, get DeepDyve free for 14 days.
Noise-suppression (denoising) methods depend on the parameters that regulate filtering intensity. The noise-free image is inaccessible in practice, and we have to choose optimal parameters that use only the original noisy image and a filtered image. Image quality can be measured in the presence of ridge structures (ridges and valleys) by analyzing difference frames. A method for filtering quality assessment is proposed: it evaluates the mutual information between the values of the difference frame points where ridge structures are present. Ridge structures are detected by analyzing the Hessian, which produces the directions and the characteristic width of the ridges and the valleys. The method has been tested for the Perona–Malik nonlinear diffusion on noisy images from the BSDS500 database.
Computational Mathematics and Modeling – Springer Journals
Published: May 31, 2018
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.