Filamentary Superconductivity in Semiconducting Policrystalline ZrSe2 Compound with Zr Vacancies

Filamentary Superconductivity in Semiconducting Policrystalline ZrSe2 Compound with Zr Vacancies Z r S e 2 is a band semiconductor studied long time ago. It has interesting electronic properties, and because its layer structure can be intercalated with different atoms to change some of the physical properties. In this investigation, we found that Zr deficiencies alter the semiconducting behavior and the compound can be turned into a superconductor. In this paper, we report our studies related to this discovery. The decreasing of the number of Zr atoms in small proportion according to the formula Zr x Se2, where x is varied from about 8.1 to 8.6 K, changing the semiconducting behavior to a superconductor with transition temperatures ranging between 7.8 and 8.5 K, is depending on the deficiencies. Outside of those ranges, the compound behaves as semiconducting with the properties already known. In our experiments, we found that this new superconductor has only a very small fraction of superconducting material determined by magnetic measurements with applied magnetic field of 10 Oe. Our conclusions is that superconductivity is filamentary. However, in one studied sample, the fraction was about 10.2 %, whereas in others is only about 1% or less. We determined the superconducting characteristics; the critical fieldsthat indicate a type 2 superonductor with Ginzburg-Landau κ parameter of the order about 2.7. The synthesis procedure is quite normal following the conventional solid state reaction. In this paper, included are the electronic characteristics, transition temperature, and evolution with temperature of the critical fields. Journal of Superconductivity and Novel Magnetism Springer Journals

Filamentary Superconductivity in Semiconducting Policrystalline ZrSe2 Compound with Zr Vacancies

Loading next page...
Springer US
Copyright © 2017 by Springer Science+Business Media, LLC
Physics; Strongly Correlated Systems, Superconductivity; Magnetism, Magnetic Materials; Condensed Matter Physics; Characterization and Evaluation of Materials
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial