Field Scale Mapping of Surface Soil Clay Concentration

Field Scale Mapping of Surface Soil Clay Concentration The surface soil clay concentration is a useful soil property to map soils, interpret soil properties, and guide irrigation, fertilizer, and agricultural chemical applications. The objective of this study was to determine whether surface soil clay concentrations could be predicted from remotely sensed imagery of bare surface soil or from soil electrical conductivity for a 115 ha field located in Crisp County, Georgia. The soil clay concentrations were determined for soil samples taken at 28 field locations. Three different data sources–an aerial color photograph image, two infrared bands from an ATLAS data set, and the electrical conductivity of the surface soil layer were used in the research. Principal components analysis was applied to the color photograph image, whereas the ratio of two infrared bands was applied to the ATLAS data set. Filtering was applied to both resulting images. The distribution of soil electrical conductivity was derived from the measured soil electrical conductivity data by spatial analysis. Statistical relationships between soil clay concentrations and the principal component 3, the ratio of two ATLAS infrared bands, and the soil electrical conductivity were analyzed, and three linear equations were derived with r 2 values 0.83, 0.52, and 0.78, respectively. The distribution of the soil clay concentrations was derived based on these three equations. Six levels of soil clay concentrations were classified in these three methods, and the advantages and disadvantages were discussed. The predicted and measured soil clay concentrations, based on additional soil samples from 30 field locations, were compared using linear regression (r 2=0.76, 0.45, and 0.77 for the three methods). The overall accuracy for these methods were 84%, 66%, and 76%, respectively. The principal components method had the highest accuracy in our research, while the result for the depressional areas is the best from the ratio method. Precision Agriculture Springer Journals

Field Scale Mapping of Surface Soil Clay Concentration

Loading next page...
Kluwer Academic Publishers
Copyright © 2004 by Kluwer Academic Publishers
Life Sciences; Agriculture; Soil Science & Conservation; Remote Sensing/Photogrammetry; Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences; Atmospheric Sciences
Publisher site
See Article on Publisher Site


  • Relation of particle size and characteristics of light reflected from porcelain enamel surfaces
    Zwermann, C. H.; Andrews, A. I.

You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial