Field-Aligned Interpolation for Semi-Lagrangian Gyrokinetic Simulations

Field-Aligned Interpolation for Semi-Lagrangian Gyrokinetic Simulations This work is devoted to the study of field-aligned interpolation in semi-Lagrangian codes. In the context of numerical simulations of magnetic fusion devices, this approach is motivated by the observation that gradients of the solution along the magnetic field lines are typically much smaller than along a perpendicular direction. In toroidal geometry, field-aligned interpolation consists of a 1D interpolation along the field line, combined with 2D interpolations on the poloidal planes (at the intersections with the field line). A theoretical justification of the method is provided in the simplified context of constant advection on a 2D periodic domain: unconditional stability is proven, and error estimates are given which highlight the advantages of field-aligned interpolation. The same methodology is successfully applied to the solution of the gyrokinetic Vlasov equation, for which we present the ion temperature gradient (ITG) instability as a classical test-case: first we solve this in cylindrical geometry (screw-pinch), and next in toroidal geometry (circular Tokamak). In the first case, the algorithm is implemented in Selalib (semi-Lagrangian library), and the numerical simulations provide linear growth rates that are in accordance with the linear dispersion analysis. In the second case, the algorithm is implemented in the Gysela code, and the numerical simulations are benchmarked with those employing the standard (not aligned) scheme. Numerical experiments show that field-aligned interpolation leads to considerable memory savings for the same level of accuracy; substantial savings are also expected in reactor-scale simulations. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Scientific Computing Springer Journals

Field-Aligned Interpolation for Semi-Lagrangian Gyrokinetic Simulations

Loading next page...
 
/lp/springer_journal/field-aligned-interpolation-for-semi-lagrangian-gyrokinetic-dMpCVDxNTI
Publisher
Springer US
Copyright
Copyright © 2017 by The Author(s)
Subject
Mathematics; Algorithms; Computational Mathematics and Numerical Analysis; Mathematical and Computational Engineering; Theoretical, Mathematical and Computational Physics
ISSN
0885-7474
eISSN
1573-7691
D.O.I.
10.1007/s10915-017-0509-5
Publisher site
See Article on Publisher Site

Abstract

This work is devoted to the study of field-aligned interpolation in semi-Lagrangian codes. In the context of numerical simulations of magnetic fusion devices, this approach is motivated by the observation that gradients of the solution along the magnetic field lines are typically much smaller than along a perpendicular direction. In toroidal geometry, field-aligned interpolation consists of a 1D interpolation along the field line, combined with 2D interpolations on the poloidal planes (at the intersections with the field line). A theoretical justification of the method is provided in the simplified context of constant advection on a 2D periodic domain: unconditional stability is proven, and error estimates are given which highlight the advantages of field-aligned interpolation. The same methodology is successfully applied to the solution of the gyrokinetic Vlasov equation, for which we present the ion temperature gradient (ITG) instability as a classical test-case: first we solve this in cylindrical geometry (screw-pinch), and next in toroidal geometry (circular Tokamak). In the first case, the algorithm is implemented in Selalib (semi-Lagrangian library), and the numerical simulations provide linear growth rates that are in accordance with the linear dispersion analysis. In the second case, the algorithm is implemented in the Gysela code, and the numerical simulations are benchmarked with those employing the standard (not aligned) scheme. Numerical experiments show that field-aligned interpolation leads to considerable memory savings for the same level of accuracy; substantial savings are also expected in reactor-scale simulations.

Journal

Journal of Scientific ComputingSpringer Journals

Published: Aug 20, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off