Fiber-optic probe measurements of void fraction and bubble size distributions beneath breaking waves

Fiber-optic probe measurements of void fraction and bubble size distributions beneath breaking waves Experiments were performed to determine the accuracy of single-tip fiber-optic probes for making simultaneous measurements of the void fraction and bubble size distributions under breaking waves. Tests in a vertical bubble column showed that the normalized RMS error in the void fraction measurements was ∼10%. The relationship between bubble rise time and bubble velocity was investigated in a unidirectional flow cell. Similar to previous studies the rise time and bubble velocity were found to be related by a power law equation. The probes can provide mean bubble velocities accurate to ±10% when a minimum of ∼15 individual bubble velocities are averaged. The fiber-optic probes were deployed beneath a plunging breaking wave in a laboratory wave channel. The slope and shape of the bubble cord length size distribution measured with the probes was found to agree closely with the size distribution measured from digital video recordings. The probes were then positioned in the splash-up zone of a plunging breaker and the resulting cord length distribution had a shape and slope that was in agreement with previous measurements. These results demonstrate that single-tip fiber optic probes can provide accurate simultaneous measurements of the void fraction and bubble sizes inside the dense bubble clouds entrained by breaking waves. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Fiber-optic probe measurements of void fraction and bubble size distributions beneath breaking waves

Loading next page...
 
/lp/springer_journal/fiber-optic-probe-measurements-of-void-fraction-and-bubble-size-RTWaPqdbmv
Publisher
Springer-Verlag
Copyright
Copyright © 2007 by Springer-Verlag
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-007-0356-5
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial