Features of the turbulent wall pressure field on a long towed cylinder

Features of the turbulent wall pressure field on a long towed cylinder Turbulent wall pressure fluctuation correlation functions were measured in water on a towed cylindrical model of length 129.8 m and diameter 3.8 cm for steady speeds ranging from 6.2 to 15.5 m/s. The drag on the model was measured with a strut-mounted load cell to provide estimates of the momentum thickness and friction velocity that are used for scaling the correlation functions. Very high momentum thickness Reynolds numbers Reθ were achieved, and varied from 4.8 × 105 to 1.1 × 106. The ratio of boundary layer thickness to cylinder radius was approximately 24, which is an order of magnitude greater than previous laboratory investigations. The ratio of momentum thickness to viscous length scale is significantly greater than for flat plate cases at comparable Reθ. A similarity scaling is shown to be more effective than outer or inner boundary layer scalings for collapsing the correlation functions. Comparisons with the early streamwise and transverse correlation measurements of Willmarth and Yang are favorable, and show consistent trends of a more rapid loss of correlated energy for cylindrical turbulent boundary layers than for flat plate cases. Convection velocities are also presented and shown to collapse well with separation scaled on outer variables. A simple model that relates the peak of the correlation function to the average coherence levels is shown to be valid for spatial separations less than the approximate momentum thickness. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Features of the turbulent wall pressure field on a long towed cylinder

Loading next page...
 
/lp/springer_journal/features-of-the-turbulent-wall-pressure-field-on-a-long-towed-cylinder-J1aXLK3gfR
Publisher
Springer-Verlag
Copyright
Copyright © 2010 by Springer-Verlag
Subject
Engineering; Engineering Thermodynamics, Heat and Mass Transfer; Fluid- and Aerodynamics; Engineering Fluid Dynamics
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-010-0841-0
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial