Features of the mammal mar1 transposons in the human, sheep, cow, and mouse genomes and implications for their evolution

Features of the mammal mar1 transposons in the human, sheep, cow, and mouse genomes and... Mariner-like elements (MLE) belong to the Tc1/mariner superfamily of class II transposons. We have analyzed the mariner related to the cecropia subfamily, and called mammal mar1, in four mammalian genomes, Bos taurus (Bovidae), Homo sapiens (Primata), Mus musculus (Rodentia), and Ovis aries (Ovidae). Three kinds of MLE sequences were found in all these species: full-length 1.3-kbp elements, shorter elements 80 bp–1.2 kbp, and single inverted terminal repeats (ITRs). All the 1.3-kbp genomic copies sequenced had an open reading frame encoding a transposase interrupted by stop codons or frame shifts. Phylogenetic analysis of the full-length elements suggested at least two distinct populations of mammal mar1 elements in each species. This was confirmed by using a statistical method that allows defining populations. Finally, the evolutionary origin of the mammal mar1 elements and the paradoxes are discussed. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Mammalian Genome Springer Journals

Features of the mammal mar1 transposons in the human, sheep, cow, and mouse genomes and implications for their evolution

Loading next page...
 
/lp/springer_journal/features-of-the-mammal-mar1-transposons-in-the-human-sheep-cow-and-s2Kt7Ja90n
Publisher
Springer Journals
Copyright
Copyright © 2000 by Springer-Verlag New York Inc.
Subject
Life Sciences; Cell Biology; Animal Genetics and Genomics; Human Genetics
ISSN
0938-8990
eISSN
1432-1777
D.O.I.
10.1007/s003350010204
Publisher site
See Article on Publisher Site

Abstract

Mariner-like elements (MLE) belong to the Tc1/mariner superfamily of class II transposons. We have analyzed the mariner related to the cecropia subfamily, and called mammal mar1, in four mammalian genomes, Bos taurus (Bovidae), Homo sapiens (Primata), Mus musculus (Rodentia), and Ovis aries (Ovidae). Three kinds of MLE sequences were found in all these species: full-length 1.3-kbp elements, shorter elements 80 bp–1.2 kbp, and single inverted terminal repeats (ITRs). All the 1.3-kbp genomic copies sequenced had an open reading frame encoding a transposase interrupted by stop codons or frame shifts. Phylogenetic analysis of the full-length elements suggested at least two distinct populations of mammal mar1 elements in each species. This was confirmed by using a statistical method that allows defining populations. Finally, the evolutionary origin of the mammal mar1 elements and the paradoxes are discussed.

Journal

Mammalian GenomeSpringer Journals

Published: Dec 1, 2000

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off