Features of defect formation under the thermal treatment of dislocation-free single-crystal large-diameter silicon wafers with the specified distribution of oxygen-containing gettering centers in the bulk

Features of defect formation under the thermal treatment of dislocation-free single-crystal... Possibilities of obtaining a defect-free layer in wafers of dislocation-free single-crystal silicon subjected to rapid thermal annealing (RTA) are analyzed. The application of RTA is based on the possibility of effectively affecting the distribution profile of the density of oxygen precipitates over the wafer thickness by means of controlling the distribution profiles of the vacancies and interstitial atoms. However, the solution of this important task encounters the problem of the appearance of large local stresses in the vicinity of the fastening supports of a large-diameter silicon wafer and its bending in the course of RTA, which are caused by its own weight. Using mathematical modeling of the three-dimensional stress-strain state and defect formation in large-diameter silicon wafers in the course of RTA, various methods of fastening the wafers are considered and the possibilities of lowering the stress-strain state of the silicon wafer are determined. A mathematical model taking into account the diffusion-recombination processes of vacancies and interstitial silicon atoms, as well as the formation of vacancy clusters is proposed to describe the defect formation in the course of RTA. Based on this model, temperature-temporal parameters of RTA, which correspond to the required (depleted near the surface) concentration profile of the vacancies and the density and size of the vacancy clusters over the wafer thickness, are determined (heating time, holding time at the highest temperature, the cooling rate of the wafer). The results of the calculations are verified for test samples using optical microscopy and transmission electron microscopy (OM and TEM). http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Microelectronics Springer Journals

Features of defect formation under the thermal treatment of dislocation-free single-crystal large-diameter silicon wafers with the specified distribution of oxygen-containing gettering centers in the bulk

Loading next page...
 
/lp/springer_journal/features-of-defect-formation-under-the-thermal-treatment-of-r1Fwz0evvx
Publisher
Springer US
Copyright
Copyright © 2013 by Pleiades Publishing, Ltd.
Subject
Engineering; Electrical Engineering
ISSN
1063-7397
eISSN
1608-3415
D.O.I.
10.1134/S1063739713080155
Publisher site
See Article on Publisher Site

Abstract

Possibilities of obtaining a defect-free layer in wafers of dislocation-free single-crystal silicon subjected to rapid thermal annealing (RTA) are analyzed. The application of RTA is based on the possibility of effectively affecting the distribution profile of the density of oxygen precipitates over the wafer thickness by means of controlling the distribution profiles of the vacancies and interstitial atoms. However, the solution of this important task encounters the problem of the appearance of large local stresses in the vicinity of the fastening supports of a large-diameter silicon wafer and its bending in the course of RTA, which are caused by its own weight. Using mathematical modeling of the three-dimensional stress-strain state and defect formation in large-diameter silicon wafers in the course of RTA, various methods of fastening the wafers are considered and the possibilities of lowering the stress-strain state of the silicon wafer are determined. A mathematical model taking into account the diffusion-recombination processes of vacancies and interstitial silicon atoms, as well as the formation of vacancy clusters is proposed to describe the defect formation in the course of RTA. Based on this model, temperature-temporal parameters of RTA, which correspond to the required (depleted near the surface) concentration profile of the vacancies and the density and size of the vacancy clusters over the wafer thickness, are determined (heating time, holding time at the highest temperature, the cooling rate of the wafer). The results of the calculations are verified for test samples using optical microscopy and transmission electron microscopy (OM and TEM).

Journal

Russian MicroelectronicsSpringer Journals

Published: Nov 14, 2013

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off