Features of Arabidopsis Genes and Genome Discovered using Full-length cDNAs

Features of Arabidopsis Genes and Genome Discovered using Full-length cDNAs Arabidopsis is currently the reference genome for higher plants. A new, more detailed statistical analysis of Arabidopsis gene structure is presented including intron and exon lengths, intergenic distances, features of promoters, and variant 5′-ends of mRNAs transcribed from the same transcription unit. We also provide a statistical characterization of Arabidopsis transcripts in terms of their size, UTR lengths, 3′-end cleavage sites, splicing variants, and coding potential. These analyses were facilitated by scrutiny of our collection of sequenced full-length cDNAs and much larger collection of 5′-ESTs, together with another set of full-length cDNAs from Salk/Stanford/Plant Gene Expression Center/RIKEN. Examples of alternative splicing are observed for transcripts from 7% of the genes and many of these genes display multiple spliced isoforms. Most splicing variants lie in non-coding regions of the transcripts. Non-canonical splice sites constitute less than 1% of all splice sites. Genes with fewer than four introns display reduced average mRNA levels. Putative alternative transcription start sites were observed in 30% of highly expressed genes and in more than 50% of the genes with low expression. Transcription start sites correlate remarkably well with a CG skew peak in the DNA sequences. The intergenic distances vary considerably, those where genes are transcribed towards one another being significantly shorter. New transcripts, missing in the current TIGR genome annotation and ESTs that are non-coding, including those antisense to known genes, are derived and cataloged in the Supplementary Material. They identify 148 new loci in the Arabidopsis genome. The conclusions drawn provide a better understanding of the Arabidopsis genome and how the gene transcripts are processed. The results also allow better predictions to be made for, as yet, poorly defined genes and provide a reference for comparisons with other plant genomes whose complete sequences are currently being determined. Some comparisons with rice are included in this paper. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Features of Arabidopsis Genes and Genome Discovered using Full-length cDNAs

Loading next page...
 
/lp/springer_journal/features-of-arabidopsis-genes-and-genome-discovered-using-full-length-6DlNtOwjxk
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 2006 by Springer
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1007/s11103-005-2564-9
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial