Feature fusion via hierarchical supervised local CCA for diagnosis of autism spectrum disorder

Feature fusion via hierarchical supervised local CCA for diagnosis of autism spectrum disorder Early diagnosis of autism spectrum disorder (ASD) is critical for timely medical intervention, for improving patient quality of life, and for reducing the financial burden borne by the society. A key issue in neuroimaging-based ASD diagnosis is the identification of discriminating features and then fusing them to produce accurate diagnosis. In this paper, we propose a novel framework for fusing complementary and discriminating features from different imaging modalities. Specifically, we integrate the Fisher discriminant criterion and local correlation information into the canonical correlation analysis (CCA) framework, giving a new feature fusion method, called Supervised Local CCA (SL-CCA), which caters specifically to local and global multimodal features. To alleviate the neighborhood selection problem associated with SL-CCA, we further propose a hierarchical SL-CCA (HSL-CCA), by performing SL-CCA with the gradually varying neighborhood sizes. Extensive experiments on the multimodal ABIDE database show that the proposed method achieves superior performance. In addition, based on feature weight analysis, we found that only a few specific brain regions play active roles in ASD diagnosis. These brain regions include the putamen, precuneus, and orbitofrontal cortex, which are highly associated with human emotional modulation and memory formation. These finding are consistent with the behavioral phenotype of ASD. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Brain Imaging and Behavior Springer Journals

Feature fusion via hierarchical supervised local CCA for diagnosis of autism spectrum disorder

Loading next page...
 
/lp/springer_journal/feature-fusion-via-hierarchical-supervised-local-cca-for-diagnosis-of-a0SKJ04T0m
Publisher
Springer Journals
Copyright
Copyright © 2016 by Springer Science+Business Media New York
Subject
Biomedicine; Neurosciences; Neuroradiology; Neuropsychology; Psychiatry
ISSN
1931-7557
eISSN
1931-7565
D.O.I.
10.1007/s11682-016-9587-5
Publisher site
See Article on Publisher Site

Abstract

Early diagnosis of autism spectrum disorder (ASD) is critical for timely medical intervention, for improving patient quality of life, and for reducing the financial burden borne by the society. A key issue in neuroimaging-based ASD diagnosis is the identification of discriminating features and then fusing them to produce accurate diagnosis. In this paper, we propose a novel framework for fusing complementary and discriminating features from different imaging modalities. Specifically, we integrate the Fisher discriminant criterion and local correlation information into the canonical correlation analysis (CCA) framework, giving a new feature fusion method, called Supervised Local CCA (SL-CCA), which caters specifically to local and global multimodal features. To alleviate the neighborhood selection problem associated with SL-CCA, we further propose a hierarchical SL-CCA (HSL-CCA), by performing SL-CCA with the gradually varying neighborhood sizes. Extensive experiments on the multimodal ABIDE database show that the proposed method achieves superior performance. In addition, based on feature weight analysis, we found that only a few specific brain regions play active roles in ASD diagnosis. These brain regions include the putamen, precuneus, and orbitofrontal cortex, which are highly associated with human emotional modulation and memory formation. These finding are consistent with the behavioral phenotype of ASD.

Journal

Brain Imaging and BehaviorSpringer Journals

Published: Aug 17, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off