Feature Analysis of Unsupervised Learning for Multi-task Classification Using Convolutional Neural Network

Feature Analysis of Unsupervised Learning for Multi-task Classification Using Convolutional... This study analyzes the characteristics of unsupervised feature learning using a convolutional neural network (CNN) to investigate its efficiency for multi-task classification and compare it to supervised learning features. We keep the conventional CNN structure and introduce modifications into the convolutional auto-encoder design to accommodate a subsampling layer and make a fair comparison. Moreover, we introduce non-maximum suppression and dropout for a better feature extraction and to impose sparsity constraints. The experimental results indicate the effectiveness of our sparsity constraints. We also analyze the efficiency of unsupervised learning features using the t-SNE and variance ratio. The experimental results show that the feature representation obtained in unsupervised learning is more advantageous for multi-task learning than that obtained in supervised learning. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Neural Processing Letters Springer Journals

Feature Analysis of Unsupervised Learning for Multi-task Classification Using Convolutional Neural Network

Loading next page...
 
/lp/springer_journal/feature-analysis-of-unsupervised-learning-for-multi-task-x0t2WSTs2F
Publisher
Springer Journals
Copyright
Copyright © 2017 by Springer Science+Business Media, LLC
Subject
Computer Science; Artificial Intelligence (incl. Robotics); Complex Systems; Computational Intelligence
ISSN
1370-4621
eISSN
1573-773X
D.O.I.
10.1007/s11063-017-9724-1
Publisher site
See Article on Publisher Site

Abstract

This study analyzes the characteristics of unsupervised feature learning using a convolutional neural network (CNN) to investigate its efficiency for multi-task classification and compare it to supervised learning features. We keep the conventional CNN structure and introduce modifications into the convolutional auto-encoder design to accommodate a subsampling layer and make a fair comparison. Moreover, we introduce non-maximum suppression and dropout for a better feature extraction and to impose sparsity constraints. The experimental results indicate the effectiveness of our sparsity constraints. We also analyze the efficiency of unsupervised learning features using the t-SNE and variance ratio. The experimental results show that the feature representation obtained in unsupervised learning is more advantageous for multi-task learning than that obtained in supervised learning.

Journal

Neural Processing LettersSpringer Journals

Published: Oct 14, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off