Feasibility of OFMSW co-digestion with sewage sludge for increasing biogas production at wastewater treatment plants

Feasibility of OFMSW co-digestion with sewage sludge for increasing biogas production at... Sweden has the ambition to increase its annual biogas production from the current level of 1.9 to 15 TWh by 2030. The unused capacity of existing anaerobic digesters at wastewater treatment plants is among the options to accomplish this goal. This study investigated the feasibility of utilizing the organic fraction of municipal solid waste (OFMSW) as a co-substrate, with primary and waste-activated sewage sludge (PWASS) for production of biogas, corresponding to 3:1 ratio on volatile solid (VS) basis. The results demonstrated that co-digestion of OFMSW with PWASS at an organic loading rate of 5 gVS l−1 day−1 has the potential to increase the biogas production approximately four times. The daily biogas production increased from 1.0 ± 0.1 to 3.8 ± 0.3 l biogas l−1 day−1, corresponding to a specific methane production of 420 ± 30 Nml methane gVS−1 during the laboratory experiment. Co-digestion of OFMSW with PWASS showed a 50:50 distribution of hydrogenotrophic and aceticlastic methanogens in the digester and enhanced the turnover kinetics of intermediate products (acetate, propionate, and oleate). Practical limitations potentially include the need for sludge dewatering to maintain a sufficient hydraulic retention time (17 days in this study), as well as additional energy consumption for mixing due to an increased sludge apparent viscosity (from 1.8 ± 0.1 to 45 ± 4.8 mPa*s in this study) at elevated OFMSW-loading rates. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Euro-Mediterranean Journal for Environmental Integration Springer Journals

Feasibility of OFMSW co-digestion with sewage sludge for increasing biogas production at wastewater treatment plants

Loading next page...
 
/lp/springer_journal/feasibility-of-ofmsw-co-digestion-with-sewage-sludge-for-increasing-P194LlBhep
Publisher
Springer International Publishing
Copyright
Copyright © 2017 by The Author(s)
Subject
Earth Sciences; Environmental Science and Engineering; Waste Water Technology / Water Pollution Control / Water Management / Aquatic Pollution; Environmental Management; Atmospheric Protection/Air Quality Control/Air Pollution; Waste Management/Waste Technology; Environmental Chemistry
ISSN
2365-6433
eISSN
2365-7448
D.O.I.
10.1007/s41207-017-0031-z
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial