Feasibility of laser-induced plasma spectroscopy for measurements of equivalence ratio in high-pressure conditions

Feasibility of laser-induced plasma spectroscopy for measurements of equivalence ratio in... In this paper, experimental results obtained with laser-induced plasma spectroscopy to retrieve local compositions are presented for an ambient pressure up to 5.0 MPa in a still cell. Well-controlled mixtures of gases are introduced and plasma is obtained with the fundamental emission of a pulsed Nd:YAG laser. Simultaneously, plasma shape and spectrally resolved data are taken with a temporal resolution down to 2 ns. First, the temporal evolutions of a high-pressure nitrogen plasma are analyzed as function of spark energy. It is shown that plasma changes orientation from an elongated shape parallel to the laser line to a perpendicular one in a very short time. Results are reported for both spatial and spectral variations. Afterward, the effects of increased carbon concentration are discussed in both shape and spectra. It is seen that strong intensity due to the atomic carbon emissions appear for the high-pressure case. From those experiments, calibration strategies are proposed to get equivalence ratio under high-pressure conditions with a ratio of carbon versus nitrogen and oxygen. The delay between plasma and measurements is set to 2,000 ns and the signal is integrated for 5,000 ns, so as to yield a good signal to noise ratio and a good sensitivity of the technique to changes in mixture fraction. Calibration curves are reported for equivalence ratio up to 1.00 and for pressure from 1.0 to 5.0 MPa. It is shown that typical uncertainties are limited to 7.5% regardless the equivalence ratio in a single shot approach using a spectral fit procedure, whereas it accounts to two times more in a more classical peak ratio approach. Increasing the pressure tends to increase the precision as lower pressure had higher uncertainties. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Feasibility of laser-induced plasma spectroscopy for measurements of equivalence ratio in high-pressure conditions

Loading next page...
Copyright © 2011 by Springer-Verlag
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial